七、yolov8图像标注和模型训练(目标检测)

环境配置方法:点这里

环境配置完毕后,需要进行标注工作和训练任务,以下分两个部分进行。

图片标注

1、按照以下的格式,将图片放入images中。(不限制文件夹路径)

2、然后下载labelme标注工具,链接;如果没有下载到或者没有积分,可以联系我发给你。labelme标注工具的使用可以参考:链接

3、目标检测的话,需要选择创建rectangle。然后就可以直接画矩形框。

3、然后我们把图片分成两个标签进行标注,一种是bad,一种是good。

jsons转txt格式

python 复制代码
import json
import os




def convert(img_size, box):
    dw = 1. / (img_size[0])
    dh = 1. / (img_size[1])
    x = (box[0] + box[2]) / 2.0 - 1
    y = (box[1] + box[3]) / 2.0 - 1
    w = box[2] - box[0]
    h = box[3] - box[1]
    x = abs(x * dw)
    w = abs(w * dw)
    y = abs(y * dh)
    h = abs(h * dh)
    return (x, y, w, h)


def decode_json(json_floder_path, json_name, txt_floder_path, classes):
    txt_name = txt_floder_path + '\\' + json_name[0:-5] + '.txt'
    txt_file = open(txt_name, 'w')

    json_path = os.path.join(json_floder_path, json_name)
    data = json.load(open(json_path, 'r', encoding='gb2312'))

    img_w = data['imageWidth']
    img_h = data['imageHeight']

    for i in data['shapes']:

        label_name = i['label']
        if (i['shape_type'] == 'rectangle'):
            x1 = int(i['points'][0][0])
            y1 = int(i['points'][0][1])
            x2 = int(i['points'][1][0])
            y2 = int(i['points'][1][1])

            bb = (x1, y1, x2, y2)
            bbox = convert((img_w, img_h), bb)
            txt_file.write(str(classes[label_name]) + " " + " ".join([str(a) for a in bbox]) + '\n')

print('json to txt over!')


if __name__ == "__main__":

    json_floder_path = 'E:\\WDX\\CODE\\python\\TOOL\\FPC\\jsons'
    txt_floder_path = 'E:\\WDX\\CODE\\python\\TOOL\\FPC\\labels'
    classes = {'bad': 0, 'good': 1}  # 多少类就写多少
    json_names = os.listdir(json_floder_path)
    for json_name in json_names:
        decode_json(json_floder_path, json_name, txt_floder_path, classes)

模型训练

1、在datasets文件夹下创建文件夹FPC-det,将images文件夹和labels文件夹放在其中。

2、然后在下面文件夹中增加ymal文件(可复制其他的,改一下里面路径就可以)

3、在detect文件夹下找到train文件,打开修改以下内容。

4、另外找到default.ymal文件,修改epochs,batch和workers根据显卡,自己调整。

5、然后右击train.py文件,运行。

6、训练完成,会生成best.pt;至此,检测模型训练完成

相关推荐
机器懒得学习1 小时前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
AI莫大猫13 小时前
(6)YOLOv4算法基本原理以及和YOLOv3 的差异
算法·yolo
KeepThinking!16 小时前
YOLO-World:Real-Time Open-Vocabulary Object Detection
人工智能·yolo·目标检测·多模态
前网易架构师-高司机19 小时前
游泳溺水识别数据集,对9984张原始图片进行YOLO,COCO JSON, VOC XML 格式的标注,平均识别率在91.7%以上
yolo·溺水·游泳溺水·游泳安全
发呆小天才O.oᯅ20 小时前
YOLOv8目标检测——详细记录使用OpenCV的DNN模块进行推理部署C++实现
c++·图像处理·人工智能·opencv·yolo·目标检测·dnn
深度学习lover21 小时前
<项目代码>YOLO Visdrone航拍目标识别<目标检测>
python·yolo·目标检测·计算机视觉·visdrone航拍目标识别
深度学习lover1 天前
[项目代码] YOLOv8 遥感航拍飞机和船舶识别 [目标检测]
python·yolo·目标检测·计算机视觉·遥感航拍飞机和船舶识别
学习BigData1 天前
【使用PyQt5和YOLOv11开发电脑屏幕区域的实时分类GUI】——选择检测区域
qt·yolo·分类
love you joyfully1 天前
目标检测与R-CNN——pytorch与paddle实现目标检测与R-CNN
人工智能·pytorch·目标检测·cnn·paddle
红色的山茶花2 天前
YOLOv9-0.1部分代码阅读笔记-dataloaders.py
笔记·深度学习·yolo