七、yolov8图像标注和模型训练(目标检测)

环境配置方法:点这里

环境配置完毕后,需要进行标注工作和训练任务,以下分两个部分进行。

图片标注

1、按照以下的格式,将图片放入images中。(不限制文件夹路径)

2、然后下载labelme标注工具,链接;如果没有下载到或者没有积分,可以联系我发给你。labelme标注工具的使用可以参考:链接

3、目标检测的话,需要选择创建rectangle。然后就可以直接画矩形框。

3、然后我们把图片分成两个标签进行标注,一种是bad,一种是good。

jsons转txt格式

python 复制代码
import json
import os




def convert(img_size, box):
    dw = 1. / (img_size[0])
    dh = 1. / (img_size[1])
    x = (box[0] + box[2]) / 2.0 - 1
    y = (box[1] + box[3]) / 2.0 - 1
    w = box[2] - box[0]
    h = box[3] - box[1]
    x = abs(x * dw)
    w = abs(w * dw)
    y = abs(y * dh)
    h = abs(h * dh)
    return (x, y, w, h)


def decode_json(json_floder_path, json_name, txt_floder_path, classes):
    txt_name = txt_floder_path + '\\' + json_name[0:-5] + '.txt'
    txt_file = open(txt_name, 'w')

    json_path = os.path.join(json_floder_path, json_name)
    data = json.load(open(json_path, 'r', encoding='gb2312'))

    img_w = data['imageWidth']
    img_h = data['imageHeight']

    for i in data['shapes']:

        label_name = i['label']
        if (i['shape_type'] == 'rectangle'):
            x1 = int(i['points'][0][0])
            y1 = int(i['points'][0][1])
            x2 = int(i['points'][1][0])
            y2 = int(i['points'][1][1])

            bb = (x1, y1, x2, y2)
            bbox = convert((img_w, img_h), bb)
            txt_file.write(str(classes[label_name]) + " " + " ".join([str(a) for a in bbox]) + '\n')

print('json to txt over!')


if __name__ == "__main__":

    json_floder_path = 'E:\\WDX\\CODE\\python\\TOOL\\FPC\\jsons'
    txt_floder_path = 'E:\\WDX\\CODE\\python\\TOOL\\FPC\\labels'
    classes = {'bad': 0, 'good': 1}  # 多少类就写多少
    json_names = os.listdir(json_floder_path)
    for json_name in json_names:
        decode_json(json_floder_path, json_name, txt_floder_path, classes)

模型训练

1、在datasets文件夹下创建文件夹FPC-det,将images文件夹和labels文件夹放在其中。

2、然后在下面文件夹中增加ymal文件(可复制其他的,改一下里面路径就可以)

3、在detect文件夹下找到train文件,打开修改以下内容。

4、另外找到default.ymal文件,修改epochs,batch和workers根据显卡,自己调整。

5、然后右击train.py文件,运行。

6、训练完成,会生成best.pt;至此,检测模型训练完成

相关推荐
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】农作物病害数据集 11498 张,病害检测,YOLOv8农作物病虫害识别系统实战训推教程。
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·1024程序员节
工业相机定制与开发9 小时前
几种常见的激光打标机及适配材质推荐选型
目标跟踪·视觉检测·材质
少林and叔叔10 小时前
基于yolov5.7.0的人工智能算法的下载、开发环境搭建(pycharm)与运行测试
人工智能·pytorch·python·yolo·目标检测·pycharm
王哈哈^_^11 小时前
【数据集】【YOLO】【目标检测】建筑垃圾数据集 4256 张,YOLO建筑垃圾识别算法实战训推教程。
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·数据集
B站计算机毕业设计之家11 小时前
计算机视觉:YOLO实现目标识别+目标跟踪技术 pyqt界面 OpenCV 计算机视觉 深度学习 计算机(建议收藏)✅
python·opencv·yolo·计算机视觉·目标跟踪·口罩识别
tt55555555555511 小时前
YOLOv5模型架构详解(三)
yolo
lxmyzzs12 小时前
【图像算法 - 31】基于深度学习的太阳能板缺陷检测系统:YOLOv12 + UI界面 + 数据集实现
人工智能·深度学习·算法·yolo·缺陷检测
lxmyzzs13 小时前
【图像算法 - 32】基于深度学习的风力发电设备缺陷检测系统:YOLOv12 + UI界面 + 数据集实现
深度学习·算法·yolo·计算机视觉
B站计算机毕业设计之家13 小时前
深度学习:YOLOv8人体行为动作识别检测系统 行为识别检测识系统 act-dataset数据集 pyqt5 机器学习✅
人工智能·python·深度学习·qt·yolo·机器学习·计算机视觉
深度学习lover14 小时前
<数据集>yolo煤矿安全帽识别数据集<目标检测>
人工智能·python·深度学习·yolo·目标检测·计算机视觉·煤矿安全帽识别