Hadoop3:MapReduce中的Shuffle机制

一、流程图

ShuffleMap方法之后,Reduce方法之前的数据处理过程称。

二、图解说明

1、数据流向

map方法中context.write(outK, outV);开始,写入环形缓冲区,再进行分区排序,写到磁盘
reduce方法拉取磁盘上的数据,归并成最终的结果文件。

一般,设置几个分区(Partition),则生成几个文件。

2、缓冲区

此处的排序,采用快速排序算法,针对key的索引进行排序,按照字典顺序进行排序。

如果环形缓冲区设置的是100m,那么,实际存储数据的空间只有50m

以此,来计算环形缓冲区的IO输出次数

3、Combiner过程

缓冲区溢出的文件有两类,spill.indexspill.out,每个分区都会生成一组。

此处主要做了两件事,对每次溢出的文件,按分区进行合并,和并算法时的算法是归并算法

归并好之后,分别进行压缩处理,并写入磁盘。

而,该过程是一个优化流程,所以,是可选流程。并不是必须的。

4、Reduce处理流程

设置几个分区,就要对应设置几个reduce对应处理

这里的分组也是非必须
reduce按分区(Partition)主动去读取map的结果文件到内存中,如果内存不够,会溢出到磁盘。

这里主要是进行文件的合并,使用的是归并算法

三、整体说明

例如,有100万数据,我设计用5个mapTask去处理。那么,每个mapTask会处理20万条数据。

分区,设置为2个,那么,reduce个数就是2个。

文件数量的变化,如下图所示。

相关推荐
武子康16 小时前
大数据-135 ClickHouse 集群连通性自检 + 数据类型避坑实战|10 分钟跑通 ON CLUSTER
大数据·分布式·后端
Olrookie17 小时前
StreamX部署详细步骤
大数据·笔记·flink
CRMEB系统商城18 小时前
【新版发布】标准版PHP v5.6.4正式版,优化部分用户体验
java·大数据·小程序·php·ux
m0_7482554118 小时前
深度掌握 Git 分支体系:从基础操作到高级策略与实践案例
大数据·git·elasticsearch
腾视科技18 小时前
安全驾驶 智在掌控|腾视科技ES06终端,为车辆运营赋能
大数据·人工智能·科技·安全·大模型
zandy101119 小时前
2025企业级智能体平台架构拆解: 如何安全合规下构筑强大的护城河
大数据·安全·架构·智能体
TDengine (老段)20 小时前
从“事后抢险”到“事前防控”:江西水投用 TDengine 时序数据库重塑防汛模式
大数据·数据库·物联网·时序数据库·tdengine·涛思数据·1024程序员节
yy7634966681 天前
WPF 之 简单高效的Revit多语言支持方案
java·大数据·linux·服务器·wpf
渲吧云渲染1 天前
SaaS模式重构工业软件竞争规则,助力中小企业快速实现数字化转型
大数据·人工智能·sass
青云交1 天前
Java 大视界 -- 基于 Java 的大数据机器学习模型在图像识别中的迁移学习与模型优化
java·大数据·迁移学习·图像识别·模型优化·deeplearning4j·机器学习模型