Hadoop3:MapReduce中的Shuffle机制

一、流程图

ShuffleMap方法之后,Reduce方法之前的数据处理过程称。

二、图解说明

1、数据流向

map方法中context.write(outK, outV);开始,写入环形缓冲区,再进行分区排序,写到磁盘
reduce方法拉取磁盘上的数据,归并成最终的结果文件。

一般,设置几个分区(Partition),则生成几个文件。

2、缓冲区

此处的排序,采用快速排序算法,针对key的索引进行排序,按照字典顺序进行排序。

如果环形缓冲区设置的是100m,那么,实际存储数据的空间只有50m

以此,来计算环形缓冲区的IO输出次数

3、Combiner过程

缓冲区溢出的文件有两类,spill.indexspill.out,每个分区都会生成一组。

此处主要做了两件事,对每次溢出的文件,按分区进行合并,和并算法时的算法是归并算法

归并好之后,分别进行压缩处理,并写入磁盘。

而,该过程是一个优化流程,所以,是可选流程。并不是必须的。

4、Reduce处理流程

设置几个分区,就要对应设置几个reduce对应处理

这里的分组也是非必须
reduce按分区(Partition)主动去读取map的结果文件到内存中,如果内存不够,会溢出到磁盘。

这里主要是进行文件的合并,使用的是归并算法

三、整体说明

例如,有100万数据,我设计用5个mapTask去处理。那么,每个mapTask会处理20万条数据。

分区,设置为2个,那么,reduce个数就是2个。

文件数量的变化,如下图所示。

相关推荐
InterestOriented6 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
pingao1413788 小时前
太阳总辐射传感器:能源、气象领域的关键测量工具
大数据·能源
百***78759 小时前
Grok-4.1技术深度解析:双版本架构突破与Python API快速集成指南
大数据·python·架构
Francek Chen10 小时前
【大数据基础】大数据处理架构Hadoop:01 Hadoop概述
大数据·hadoop·分布式·架构
互联网科技看点11 小时前
诸葛io获认可:金融分析智能体赛道领航者
大数据·人工智能·金融
2301_8002561112 小时前
全球气候与环境变化考试知识点梳理(1)
大数据·人工智能
edisao12 小时前
六、 读者高频疑问解答 & 架构价值延伸
大数据·开发语言·人工智能·科技·架构·php
-大头.12 小时前
GIT教程系列(共3篇)---------第二篇:Git高级协作与团队实战完全指南
大数据·git·elasticsearch
HXDGCL13 小时前
大会观察 | 破除创新链堵点:论“工厂直供”模式如何加速自动化核心部件迭代
大数据·人工智能·自动化·自动化生产线·环形导轨
五度易链-区域产业数字化管理平台13 小时前
五度易链企业数据服务架构思考:从“存数据”到“用数据”的全周期解决方案
大数据·人工智能·架构