Hadoop3:MapReduce中的Shuffle机制

一、流程图

ShuffleMap方法之后,Reduce方法之前的数据处理过程称。

二、图解说明

1、数据流向

map方法中context.write(outK, outV);开始,写入环形缓冲区,再进行分区排序,写到磁盘
reduce方法拉取磁盘上的数据,归并成最终的结果文件。

一般,设置几个分区(Partition),则生成几个文件。

2、缓冲区

此处的排序,采用快速排序算法,针对key的索引进行排序,按照字典顺序进行排序。

如果环形缓冲区设置的是100m,那么,实际存储数据的空间只有50m

以此,来计算环形缓冲区的IO输出次数

3、Combiner过程

缓冲区溢出的文件有两类,spill.indexspill.out,每个分区都会生成一组。

此处主要做了两件事,对每次溢出的文件,按分区进行合并,和并算法时的算法是归并算法

归并好之后,分别进行压缩处理,并写入磁盘。

而,该过程是一个优化流程,所以,是可选流程。并不是必须的。

4、Reduce处理流程

设置几个分区,就要对应设置几个reduce对应处理

这里的分组也是非必须
reduce按分区(Partition)主动去读取map的结果文件到内存中,如果内存不够,会溢出到磁盘。

这里主要是进行文件的合并,使用的是归并算法

三、整体说明

例如,有100万数据,我设计用5个mapTask去处理。那么,每个mapTask会处理20万条数据。

分区,设置为2个,那么,reduce个数就是2个。

文件数量的变化,如下图所示。

相关推荐
TOWE technology11 分钟前
PDU、工业连接器与数据中心机柜电力系统
大数据·人工智能·数据中心·idc·pdu·智能pdu·定制电源管理
五度易链-区域产业数字化管理平台18 分钟前
行业研究+大数据+AI:“五度易链”如何构建高质量产业数据库?
大数据·人工智能
aitoolhub20 分钟前
AI 生图技术解析:从训练到输出的全流程机制
大数据·人工智能·深度学习
计算所陈老师36 分钟前
Palantir的核心是Ontology
大数据·人工智能·知识图谱
Macbethad39 分钟前
工业设备系统管理程序技术方案
大数据·wpf
安达发公司42 分钟前
安达发|颜色与产能如何兼得?APS高级排程织就智慧生产网
大数据·人工智能·aps高级排程·aps排程软件·安达发aps
武子康1 小时前
大数据-175 Elasticsearch Term 精确查询与 Bool 组合实战:range/regexp/fuzzy 全示例
大数据·后端·elasticsearch
小码哥0681 小时前
企业灵活用工小程序(解析+源码)
大数据·企业灵活用工·灵活用工·企业用工·用工系统
Deepoch1 小时前
发动机设计迎突破!Deepoc-M低幻觉模型重塑研发逻辑
大数据·人工智能·deepoc