Hadoop3:MapReduce中的Shuffle机制

一、流程图

ShuffleMap方法之后,Reduce方法之前的数据处理过程称。

二、图解说明

1、数据流向

map方法中context.write(outK, outV);开始,写入环形缓冲区,再进行分区排序,写到磁盘
reduce方法拉取磁盘上的数据,归并成最终的结果文件。

一般,设置几个分区(Partition),则生成几个文件。

2、缓冲区

此处的排序,采用快速排序算法,针对key的索引进行排序,按照字典顺序进行排序。

如果环形缓冲区设置的是100m,那么,实际存储数据的空间只有50m

以此,来计算环形缓冲区的IO输出次数

3、Combiner过程

缓冲区溢出的文件有两类,spill.indexspill.out,每个分区都会生成一组。

此处主要做了两件事,对每次溢出的文件,按分区进行合并,和并算法时的算法是归并算法

归并好之后,分别进行压缩处理,并写入磁盘。

而,该过程是一个优化流程,所以,是可选流程。并不是必须的。

4、Reduce处理流程

设置几个分区,就要对应设置几个reduce对应处理

这里的分组也是非必须
reduce按分区(Partition)主动去读取map的结果文件到内存中,如果内存不够,会溢出到磁盘。

这里主要是进行文件的合并,使用的是归并算法

三、整体说明

例如,有100万数据,我设计用5个mapTask去处理。那么,每个mapTask会处理20万条数据。

分区,设置为2个,那么,reduce个数就是2个。

文件数量的变化,如下图所示。

相关推荐
旗讯数字1 天前
旗讯 OCR 技术解析:金融行业手写表格识别方案与系统集成实践
大数据·金融·ocr
2501_941404311 天前
绿色科技与可持续发展:科技如何推动环境保护与资源管理
大数据·人工智能
swanwei1 天前
量子科技对核心产业的颠覆性影响及落地时间表(全文2500字)
大数据·网络·人工智能·程序人生·量子计算
isNotNullX2 天前
数据中台有什么用?数据仓库和数据中台怎么选?
大数据·数据仓库·人工智能·数据中台
roman_日积跬步-终至千里2 天前
【AI Engineering】Should I build this AI application?—AI应用决策框架与实践指南
大数据·人工智能
DolphinScheduler社区2 天前
图解 Apache DolphinScheduler 如何配置飞书告警
java·大数据·开源·飞书·告警·任务调度·海豚调度
稚辉君.MCA_P8_Java2 天前
通义千问 SpringBoot 性能优化全景设计(面向 Java 开发者)
大数据·hadoop·spring boot·分布式·架构
SeaTunnel2 天前
Apache SeaTunnel 如何将 CDC 数据流转换为 Append-Only 模式?
大数据·开源·apache·开发者·seatunnel·转换插件