Hadoop3:MapReduce中的Shuffle机制

一、流程图

ShuffleMap方法之后,Reduce方法之前的数据处理过程称。

二、图解说明

1、数据流向

map方法中context.write(outK, outV);开始,写入环形缓冲区,再进行分区排序,写到磁盘
reduce方法拉取磁盘上的数据,归并成最终的结果文件。

一般,设置几个分区(Partition),则生成几个文件。

2、缓冲区

此处的排序,采用快速排序算法,针对key的索引进行排序,按照字典顺序进行排序。

如果环形缓冲区设置的是100m,那么,实际存储数据的空间只有50m

以此,来计算环形缓冲区的IO输出次数

3、Combiner过程

缓冲区溢出的文件有两类,spill.indexspill.out,每个分区都会生成一组。

此处主要做了两件事,对每次溢出的文件,按分区进行合并,和并算法时的算法是归并算法

归并好之后,分别进行压缩处理,并写入磁盘。

而,该过程是一个优化流程,所以,是可选流程。并不是必须的。

4、Reduce处理流程

设置几个分区,就要对应设置几个reduce对应处理

这里的分组也是非必须
reduce按分区(Partition)主动去读取map的结果文件到内存中,如果内存不够,会溢出到磁盘。

这里主要是进行文件的合并,使用的是归并算法

三、整体说明

例如,有100万数据,我设计用5个mapTask去处理。那么,每个mapTask会处理20万条数据。

分区,设置为2个,那么,reduce个数就是2个。

文件数量的变化,如下图所示。

相关推荐
鸿乃江边鸟24 分钟前
Spark datafusion comet向量化插件CometPlugin
大数据·spark·native
牛客企业服务29 分钟前
牛客CEO叶向宇:从AI工具迈向AI Agent,构建人机协作新关系
大数据·人工智能
Ydwlcloud1 小时前
个人博客与内容站部署在AWS:2026年的理性选择与更优策略
大数据·服务器·人工智能·云计算·aws
中华网商业1 小时前
绿色金融创新模式助力能源转型
大数据·金融·能源
腾迹1 小时前
2026年企业微信SCRM系统服务推荐:微盛·企微管家的AI私域增长方案
大数据·人工智能
Python_Study20252 小时前
制造业企业如何构建高效数据采集系统:从挑战到实践
大数据·网络·数据结构·人工智能·架构
驭白.2 小时前
敏捷与韧性:新能源汽车智慧供应链的协同网络
大数据·人工智能·自动化·汽车·数字化转型·新能源汽车
tjjucheng2 小时前
专业小程序定制开发公司推荐
大数据·小程序
qq_12498707532 小时前
基于SSM框架的智能密室逃脱信息管理系统(源码+论文+部署+安装)
java·大数据·人工智能·spring boot·后端·毕业设计·计算机毕业设计
no24544102 小时前
RAGFlow 全面接入 MinerU 2.0,支持 pipeline、vlm-transformers、vlm-sglang 三种模式,解析精度大幅度up
java·大数据·人工智能·python·ai·sglang