用python写一个AI Agent对接企业微信上下游协同的案例

要实现一个AI Agent对接企业微信上下游协同,我们可以使用Python编写一个企业微信机器人,用于接收和处理来自企业微信的消息。在此示例中,我们将使用`wechatpy`库来实现企业微信机器人,并使用`requests`库实现与上下游系统的通信。

首先,确保安装了`wechatpy`和`requests`库:

```bash pip install wechatpy requests ```

接下来,编写一个简单的企业微信机器人:

```python import os from wechatpy import WeChatRobot from wechatpy.utils import check_signature from requests import request

企业微信机器人配置 corp_id = 'your_corp_id' secret = 'your_secret' token = 'your_token'

创建企业微信机器人实例 robot = WeChatRobot(corp_id, secret, token)

处理消息 def handle_message(message):

提取消息内容 content = message.get('content', '')

根据内容执行相应操作 if content.startswith('查询'): # 发送查询请求 url = 'https://your_upstream_system_api/search' params = {'keyword': content[2:], 'corp_id': corp_id} response = request('GET', url, params=params) result = response.json()

发送回复消息 reply_message = '查询结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message) elif content.startswith('提交'):

发送提交请求 url = 'https://your_downstream_system_api/submit' params = {'corp_id': corp_id, 'data': message['form_data']} response = request('POST', url, json=params) result = response.json() # 发送回复消息 reply_message = '提交结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message)

验证请求签名 def check_signature(signature, timestamp, nonce): return check_signature(corp_id, secret, token, signature, timestamp, nonce)

接收企业微信消息 def receive_message(message): if message['message_type'] == 'private': # 处理私人消息 handle_message(message)

启动企业微信机器人 robot.start()

示例:模拟发送消息 send_message = {'user_id': '123', 'content': '查询产品信息'} robot.send_private_msg(send_message['user_id'], send_message['content']) ```

请注意,您需要将`your_corp_id`、`your_secret`、`your_token`以及上下游系统API的地址替换为实际值。此外,本示例仅作为演示,实际应用中可能需要根据具体需求进行扩展和优化。 在此示例中,我们创建了一个简单的企业微信机器人,能够接收和处理来自企业微信的消息。当收到查询或提交消息时,机器人会分别发送请求至上下游系统API,并将回复结果发送给用户。这样,我们就实现了一个AI Agent对接企业微信上下游协同的案例。

相关推荐
自动化代码美学1 分钟前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子4 分钟前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望12 分钟前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端22 分钟前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白31 分钟前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗
阿正的梦工坊32 分钟前
Kronecker积详解
人工智能·深度学习·机器学习
Rui_Freely33 分钟前
Vins-Fusion之ROS2(节点创建、订阅者、发布者)(一)
人工智能·计算机视觉
快降重34 分钟前
投稿前的“精准体检”:自查查重,如何选择可靠的第三方工具?
人工智能·aigc·写作·降重·查重·降ai
秃了也弱了。39 分钟前
python实现定时任务:schedule库、APScheduler库
开发语言·python
麦麦大数据1 小时前
F067 中医养生知识图谱健康问答系统+膳食食疗系统
人工智能·知识图谱·问答·养生·膳食·食疗