用python写一个AI Agent对接企业微信上下游协同的案例

要实现一个AI Agent对接企业微信上下游协同,我们可以使用Python编写一个企业微信机器人,用于接收和处理来自企业微信的消息。在此示例中,我们将使用`wechatpy`库来实现企业微信机器人,并使用`requests`库实现与上下游系统的通信。

首先,确保安装了`wechatpy`和`requests`库:

```bash pip install wechatpy requests ```

接下来,编写一个简单的企业微信机器人:

```python import os from wechatpy import WeChatRobot from wechatpy.utils import check_signature from requests import request

企业微信机器人配置 corp_id = 'your_corp_id' secret = 'your_secret' token = 'your_token'

创建企业微信机器人实例 robot = WeChatRobot(corp_id, secret, token)

处理消息 def handle_message(message):

提取消息内容 content = message.get('content', '')

根据内容执行相应操作 if content.startswith('查询'): # 发送查询请求 url = 'https://your_upstream_system_api/search' params = {'keyword': content[2:], 'corp_id': corp_id} response = request('GET', url, params=params) result = response.json()

发送回复消息 reply_message = '查询结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message) elif content.startswith('提交'):

发送提交请求 url = 'https://your_downstream_system_api/submit' params = {'corp_id': corp_id, 'data': message['form_data']} response = request('POST', url, json=params) result = response.json() # 发送回复消息 reply_message = '提交结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message)

验证请求签名 def check_signature(signature, timestamp, nonce): return check_signature(corp_id, secret, token, signature, timestamp, nonce)

接收企业微信消息 def receive_message(message): if message['message_type'] == 'private': # 处理私人消息 handle_message(message)

启动企业微信机器人 robot.start()

示例:模拟发送消息 send_message = {'user_id': '123', 'content': '查询产品信息'} robot.send_private_msg(send_message['user_id'], send_message['content']) ```

请注意,您需要将`your_corp_id`、`your_secret`、`your_token`以及上下游系统API的地址替换为实际值。此外,本示例仅作为演示,实际应用中可能需要根据具体需求进行扩展和优化。 在此示例中,我们创建了一个简单的企业微信机器人,能够接收和处理来自企业微信的消息。当收到查询或提交消息时,机器人会分别发送请求至上下游系统API,并将回复结果发送给用户。这样,我们就实现了一个AI Agent对接企业微信上下游协同的案例。

相关推荐
嗷嗷哦润橘_1 天前
AI Agent学习:MetaGPT之我的工作
人工智能·学习·flask
PPIO派欧云1 天前
PPIO上线阿里Wan 2.6:制作电影级AI视频,对标Sora2
人工智能
火山kim1 天前
经典论文研读报告:DAGGER (Dataset Aggregation)
人工智能·深度学习·机器学习
祁思妙想1 天前
linux常用命令
开发语言·python
流水落花春去也1 天前
用yolov8 训练,最后形成训练好的文件。 并且能在后续项目使用
python
Coding茶水间1 天前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Serendipity_Carl1 天前
数据可视化实战之链家
python·数据可视化·数据清洗
檐下翻书1731 天前
算法透明度审核:AI 决策的 “黑箱” 如何被打开?
人工智能
undsky_1 天前
【RuoYi-SpringBoot3-Pro】:接入 AI 对话能力
人工智能·spring boot·后端·ai·ruoyi
网易伏羲1 天前
网易伏羲受邀出席2025具身智能人形机器人年度盛会,并荣获“偃师·场景应用灵智奖
人工智能·群体智能·具身智能·游戏ai·网易伏羲·网易灵动·网易有灵智能体