用python写一个AI Agent对接企业微信上下游协同的案例

要实现一个AI Agent对接企业微信上下游协同,我们可以使用Python编写一个企业微信机器人,用于接收和处理来自企业微信的消息。在此示例中,我们将使用`wechatpy`库来实现企业微信机器人,并使用`requests`库实现与上下游系统的通信。

首先,确保安装了`wechatpy`和`requests`库:

```bash pip install wechatpy requests ```

接下来,编写一个简单的企业微信机器人:

```python import os from wechatpy import WeChatRobot from wechatpy.utils import check_signature from requests import request

企业微信机器人配置 corp_id = 'your_corp_id' secret = 'your_secret' token = 'your_token'

创建企业微信机器人实例 robot = WeChatRobot(corp_id, secret, token)

处理消息 def handle_message(message):

提取消息内容 content = message.get('content', '')

根据内容执行相应操作 if content.startswith('查询'): # 发送查询请求 url = 'https://your_upstream_system_api/search' params = {'keyword': content[2:], 'corp_id': corp_id} response = request('GET', url, params=params) result = response.json()

发送回复消息 reply_message = '查询结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message) elif content.startswith('提交'):

发送提交请求 url = 'https://your_downstream_system_api/submit' params = {'corp_id': corp_id, 'data': message['form_data']} response = request('POST', url, json=params) result = response.json() # 发送回复消息 reply_message = '提交结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message)

验证请求签名 def check_signature(signature, timestamp, nonce): return check_signature(corp_id, secret, token, signature, timestamp, nonce)

接收企业微信消息 def receive_message(message): if message['message_type'] == 'private': # 处理私人消息 handle_message(message)

启动企业微信机器人 robot.start()

示例:模拟发送消息 send_message = {'user_id': '123', 'content': '查询产品信息'} robot.send_private_msg(send_message['user_id'], send_message['content']) ```

请注意,您需要将`your_corp_id`、`your_secret`、`your_token`以及上下游系统API的地址替换为实际值。此外,本示例仅作为演示,实际应用中可能需要根据具体需求进行扩展和优化。 在此示例中,我们创建了一个简单的企业微信机器人,能够接收和处理来自企业微信的消息。当收到查询或提交消息时,机器人会分别发送请求至上下游系统API,并将回复结果发送给用户。这样,我们就实现了一个AI Agent对接企业微信上下游协同的案例。

相关推荐
小雷FansUnion1 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周1 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
思则变2 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
叶子爱分享2 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜2 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿2 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_2 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1232 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
漫谈网络2 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
学技术的大胜嗷2 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习