用python写一个AI Agent对接企业微信上下游协同的案例

要实现一个AI Agent对接企业微信上下游协同,我们可以使用Python编写一个企业微信机器人,用于接收和处理来自企业微信的消息。在此示例中,我们将使用`wechatpy`库来实现企业微信机器人,并使用`requests`库实现与上下游系统的通信。

首先,确保安装了`wechatpy`和`requests`库:

```bash pip install wechatpy requests ```

接下来,编写一个简单的企业微信机器人:

```python import os from wechatpy import WeChatRobot from wechatpy.utils import check_signature from requests import request

企业微信机器人配置 corp_id = 'your_corp_id' secret = 'your_secret' token = 'your_token'

创建企业微信机器人实例 robot = WeChatRobot(corp_id, secret, token)

处理消息 def handle_message(message):

提取消息内容 content = message.get('content', '')

根据内容执行相应操作 if content.startswith('查询'): # 发送查询请求 url = 'https://your_upstream_system_api/search' params = {'keyword': content[2:], 'corp_id': corp_id} response = request('GET', url, params=params) result = response.json()

发送回复消息 reply_message = '查询结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message) elif content.startswith('提交'):

发送提交请求 url = 'https://your_downstream_system_api/submit' params = {'corp_id': corp_id, 'data': message['form_data']} response = request('POST', url, json=params) result = response.json() # 发送回复消息 reply_message = '提交结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message)

验证请求签名 def check_signature(signature, timestamp, nonce): return check_signature(corp_id, secret, token, signature, timestamp, nonce)

接收企业微信消息 def receive_message(message): if message['message_type'] == 'private': # 处理私人消息 handle_message(message)

启动企业微信机器人 robot.start()

示例:模拟发送消息 send_message = {'user_id': '123', 'content': '查询产品信息'} robot.send_private_msg(send_message['user_id'], send_message['content']) ```

请注意,您需要将`your_corp_id`、`your_secret`、`your_token`以及上下游系统API的地址替换为实际值。此外,本示例仅作为演示,实际应用中可能需要根据具体需求进行扩展和优化。 在此示例中,我们创建了一个简单的企业微信机器人,能够接收和处理来自企业微信的消息。当收到查询或提交消息时,机器人会分别发送请求至上下游系统API,并将回复结果发送给用户。这样,我们就实现了一个AI Agent对接企业微信上下游协同的案例。

相关推荐
后端小肥肠6 分钟前
从n8n到Claude Skills:轻松搞定小红书热门美食手账,3分钟出图,小白也能会!
人工智能·aigc·agent
梦想的旅途28 分钟前
Python从脚本到系统:企微协议中控平台的工程化部署与性能监控
企业微信
之歆12 分钟前
Coze 照片知识库深度解析:当 AI 学会「看图说话」
人工智能
苡~17 分钟前
【claude skill系列 - 10】Claude_Skill全栈实战_从0到1构建个人AI助手
人工智能·ai编程·api 中转站·稳定ai编程工具
小陈phd18 分钟前
多模态大模型学习笔记(五)—— 神经网络激活函数完整指南
人工智能·笔记·神经网络·学习·自然语言处理
曦云沐21 分钟前
第四篇:LangChain 1.0 Community 生态全览:第三方集成与厂商包最佳实践
人工智能·langchain·大模型开发框架
yuanmenghao25 分钟前
Linux 性能实战 | 第 17 篇:strace 系统调用分析与性能调优 [特殊字符]
linux·python·性能优化
小叮当⇔28 分钟前
电动工具品牌简介
大数据·人工智能
bst@微胖子30 分钟前
PyTorch深度学习框架项目合集一
人工智能·pytorch·python
Axis tech30 分钟前
Xsens动作捕捉系统采集用于人形机器人AI大数据训练的精确运动数据
人工智能·深度学习·机器人