用python写一个AI Agent对接企业微信上下游协同的案例

要实现一个AI Agent对接企业微信上下游协同,我们可以使用Python编写一个企业微信机器人,用于接收和处理来自企业微信的消息。在此示例中,我们将使用`wechatpy`库来实现企业微信机器人,并使用`requests`库实现与上下游系统的通信。

首先,确保安装了`wechatpy`和`requests`库:

```bash pip install wechatpy requests ```

接下来,编写一个简单的企业微信机器人:

```python import os from wechatpy import WeChatRobot from wechatpy.utils import check_signature from requests import request

企业微信机器人配置 corp_id = 'your_corp_id' secret = 'your_secret' token = 'your_token'

创建企业微信机器人实例 robot = WeChatRobot(corp_id, secret, token)

处理消息 def handle_message(message):

提取消息内容 content = message.get('content', '')

根据内容执行相应操作 if content.startswith('查询'): # 发送查询请求 url = 'https://your_upstream_system_api/search' params = {'keyword': content[2:], 'corp_id': corp_id} response = request('GET', url, params=params) result = response.json()

发送回复消息 reply_message = '查询结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message) elif content.startswith('提交'):

发送提交请求 url = 'https://your_downstream_system_api/submit' params = {'corp_id': corp_id, 'data': message['form_data']} response = request('POST', url, json=params) result = response.json() # 发送回复消息 reply_message = '提交结果:' + result['result_message'] robot.send_private_msg(message['user_id'], reply_message)

验证请求签名 def check_signature(signature, timestamp, nonce): return check_signature(corp_id, secret, token, signature, timestamp, nonce)

接收企业微信消息 def receive_message(message): if message['message_type'] == 'private': # 处理私人消息 handle_message(message)

启动企业微信机器人 robot.start()

示例:模拟发送消息 send_message = {'user_id': '123', 'content': '查询产品信息'} robot.send_private_msg(send_message['user_id'], send_message['content']) ```

请注意,您需要将`your_corp_id`、`your_secret`、`your_token`以及上下游系统API的地址替换为实际值。此外,本示例仅作为演示,实际应用中可能需要根据具体需求进行扩展和优化。 在此示例中,我们创建了一个简单的企业微信机器人,能够接收和处理来自企业微信的消息。当收到查询或提交消息时,机器人会分别发送请求至上下游系统API,并将回复结果发送给用户。这样,我们就实现了一个AI Agent对接企业微信上下游协同的案例。

相关推荐
人工智能训练1 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1682 小时前
python性能优化方案研究
python·性能优化
源于花海2 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
码云数智-大飞3 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
DisonTangor4 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19824 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了4 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
biuyyyxxx4 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
数智联AI团队4 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
极客数模4 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab