DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测

DDI-GPT: Explainable Prediction of Drug-Drug Interactions using Large Language Models enhanced with Knowledge Graphs 是一篇关于药物相互作用(DDI)预测的研究论文,该研究提出了一个深度学习框架DDI-GPT,它通过结合知识图谱(KGs)和预训练的大型语言模型(LLMs)来预测药物之间的相互作用。以下是对这篇文献内容的解读:

研究背景与目的:

药物相互作用(DDI)可能导致不可预测的药理效应和不良事件,这对患者安全构成威胁。传统的DDI检测方法耗时且成本高昂,因此开发有效的计算方法来预测DDI变得尤为重要 。

知识图谱构建:

DDI-GPT利用iBKH知识图谱,整合了药物靶点、代谢酶、通路、药理分类等多层次信息,包含129,361个实体和4,033,682个关系。

模型架构:

知识模块:将药物对在知识图谱中的信息转换为句子树,以丰富语义表示。

预测模块:基于BioGPT-2架构进行训练,利用TwoSIDES数据集优化模型。

解释模块:通过重要性评分和路径富集分析揭示预测背后的生物学机制 。

零样本预 测:

将训练后的DDI-GPT应用于FDA数据集中的9480条DDI记录,包括442种不同药物,进行模型外推 。

性能评估:

DDI-GPT在AUROC中取得了0.964的最佳性能,并且在9480条DDI记录的零注射预测中达到了0.84 AUROC的高精度,与之前发布的最佳方法相比提高了14%。

模型解释与应用:

DDI-GPT将数据驱动的预测与可解释的见解相结合,通过特征归因方法提高了对通路和交互组网络的解释质量,支持临床决策,包括蛋白质-蛋白质相互作用和不良反应联系的网络可视化

点评观点

独立性:DDI-GPT作为一个独立的框架,不仅能够预测DDI,还能提供预测背后的生物学机制解释,这在药物安全研究中具有重要意义。

延展性:通过整合个体化数据(如基因突变)进一步优化模型性能,DDI-GPT有潜力实现更精准的医疗预测,这对于精准医疗至关重要。

创新点:

DDI-GPT的主要创新在于将知识图谱与大型语言模型相结合,这不仅提升了药物相互作用预测的准确性,还增强了模型的解释性,为药物安全研究提供了强大的工具 。

实际应用价值:

DDI-GPT的实际应用价值体现在其能够提前预测潜在的药物相互作用,为患者安全提供保障,尤其是在新药物或研究不足的药物相互作用预测方面显示出稳健性 。

未来方向:

未来的研究可以通过整合更多的个体化数据和先进的机器学习技术,进一步优化DDI-GPT的性能,使其在药物相互作用预测领域发挥更大的作用。

欢迎关注"赛文AI药学"!

赛文AI药学,致力于探索人工智能在药学场景中的创新与应用,聚焦药师的AI赋能与专业素养提升。我们提供前沿的AI技术动态、实用的药学场景案例分享以及个性化学习资源,助力药师在智能化时代实现价值跃升。

相关推荐
美狐美颜sdk3 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程3 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝3 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion5 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周5 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享6 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜6 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿6 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_7 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1237 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪