数据生成 | Matlab实现基于SNN浅层神经网络的数据生成

% 设置数据生成参数

numSamples = 1000; % 数据样本数量

inputSize = 2; % 输入特征维度

outputSize = 1; % 输出标签维度

% 生成输入特征

X = rand(numSamples, inputSize); % 替换为实际的输入特征生成方法

% 定义SNN模型参数

numHiddenUnits = 10; % 隐藏层单元数量

learningRate = 0.1; % 学习率

numEpochs = 100; % 迭代次数

% 初始化网络权重

W1 = rand(inputSize, numHiddenUnits);

b1 = rand(1, numHiddenUnits);

W2 = rand(numHiddenUnits, outputSize);

b2 = rand(1, outputSize);

% 训练SNN模型

for epoch = 1:numEpochs

% 前向传播

hiddenActivations = sigmoid(X * W1 + b1);

outputActivations = sigmoid(hiddenActivations * W2 + b2);

% 计算损失函数(均方误差)

loss = mean((outputActivations - X).^2);

% 反向传播

outputDelta = (outputActivations - X) .* sigmoidDerivative(outputActivations);

hiddenDelta = (outputDelta * W2') .* sigmoidDerivative(hiddenActivations);

% 更新权重

W2 = W2 - learningRate * hiddenActivations' * outputDelta;

b2 = b2 - learningRate * sum(outputDelta);

W1 = W1 - learningRate * X' * hiddenDelta;

b1 = b1 - learningRate * sum(hiddenDelta);

1

2

3

4

5

6

7

8

9

10

11

12

end

% 使用训练好的SNN模型生成数据

generatedData = sigmoid(sigmoid(X * W1 + b1) * W2 + b2);

% 打印生成的数据

disp(generatedData);

% 定义Sigmoid激活函数

function y = sigmoid(x)

y = 1 ./ (1 + exp(-x));

end

% 定义Sigmoid激活函数的导数

function y = sigmoidDerivative(x)

y = sigmoid(x) .* (1 - sigmoid(x));

end生成

相关推荐
Ajiang28247353042 小时前
对于C++中stack和queue的认识以及priority_queue的模拟实现
开发语言·c++
幽兰的天空2 小时前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
Theodore_10225 小时前
4 设计模式原则之接口隔离原则
java·开发语言·设计模式·java-ee·接口隔离原则·javaee
----云烟----7 小时前
QT中QString类的各种使用
开发语言·qt
lsx2024067 小时前
SQL SELECT 语句:基础与进阶应用
开发语言
开心工作室_kaic7 小时前
ssm161基于web的资源共享平台的共享与开发+jsp(论文+源码)_kaic
java·开发语言·前端
向宇it7 小时前
【unity小技巧】unity 什么是反射?反射的作用?反射的使用场景?反射的缺点?常用的反射操作?反射常见示例
开发语言·游戏·unity·c#·游戏引擎
武子康7 小时前
Java-06 深入浅出 MyBatis - 一对一模型 SqlMapConfig 与 Mapper 详细讲解测试
java·开发语言·数据仓库·sql·mybatis·springboot·springcloud
转世成为计算机大神8 小时前
易考八股文之Java中的设计模式?
java·开发语言·设计模式
宅小海8 小时前
scala String
大数据·开发语言·scala