数据生成 | Matlab实现基于SNN浅层神经网络的数据生成

% 设置数据生成参数

numSamples = 1000; % 数据样本数量

inputSize = 2; % 输入特征维度

outputSize = 1; % 输出标签维度

% 生成输入特征

X = rand(numSamples, inputSize); % 替换为实际的输入特征生成方法

% 定义SNN模型参数

numHiddenUnits = 10; % 隐藏层单元数量

learningRate = 0.1; % 学习率

numEpochs = 100; % 迭代次数

% 初始化网络权重

W1 = rand(inputSize, numHiddenUnits);

b1 = rand(1, numHiddenUnits);

W2 = rand(numHiddenUnits, outputSize);

b2 = rand(1, outputSize);

% 训练SNN模型

for epoch = 1:numEpochs

% 前向传播

hiddenActivations = sigmoid(X * W1 + b1);

outputActivations = sigmoid(hiddenActivations * W2 + b2);

% 计算损失函数(均方误差)

loss = mean((outputActivations - X).^2);

% 反向传播

outputDelta = (outputActivations - X) .* sigmoidDerivative(outputActivations);

hiddenDelta = (outputDelta * W2') .* sigmoidDerivative(hiddenActivations);

% 更新权重

W2 = W2 - learningRate * hiddenActivations' * outputDelta;

b2 = b2 - learningRate * sum(outputDelta);

W1 = W1 - learningRate * X' * hiddenDelta;

b1 = b1 - learningRate * sum(hiddenDelta);

1

2

3

4

5

6

7

8

9

10

11

12

end

% 使用训练好的SNN模型生成数据

generatedData = sigmoid(sigmoid(X * W1 + b1) * W2 + b2);

% 打印生成的数据

disp(generatedData);

% 定义Sigmoid激活函数

function y = sigmoid(x)

y = 1 ./ (1 + exp(-x));

end

% 定义Sigmoid激活函数的导数

function y = sigmoidDerivative(x)

y = sigmoid(x) .* (1 - sigmoid(x));

end生成

相关推荐
007php00716 分钟前
某游戏大厂 Java 面试题深度解析(四)
java·开发语言·python·面试·职场和发展·golang·php
Mr.Jessy18 分钟前
Web APIs学习第一天:获取 DOM 对象
开发语言·前端·javascript·学习·html
午安~婉19 分钟前
javaScript八股问题
开发语言·javascript·原型模式
想不明白的过度思考者26 分钟前
Rust——异步递归深度指南:从问题到解决方案
开发语言·后端·rust
芝麻开门-新起点1 小时前
flutter 生命周期管理:从 Widget 到 State 的完整解析
开发语言·javascript·ecmascript
我先去打把游戏先2 小时前
ESP32开发指南(基于IDF):连接AWS,乐鑫官方esp-aws-iot-master例程实验、跑通
开发语言·笔记·单片机·物联网·学习·云计算·aws
逻极2 小时前
Rust数据类型(上):标量类型全解析
开发语言·后端·rust
Zhangzy@2 小时前
Rust 编译优化选项
android·开发语言·rust
百锦再2 小时前
第2章 第一个Rust程序
java·开发语言·后端·rust·eclipse·tomcat·hibernate
Zhangzy@2 小时前
Rust 中的注释与文档注释实践指南
开发语言·后端·rust