鱼眼相机 去畸变

目录

枕形畸变和去枕形畸变

去枕形畸变失败


枕形畸变和去枕形畸变

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 创建一个带网格的原始图像
def create_grid(image_size=512, grid_size=20):
    image = np.zeros((image_size, image_size, 3), dtype=np.uint8)
    for i in range(0, image_size, grid_size):
        cv2.line(image, (i, 0), (i, image_size), (255, 255, 255), 1)
        cv2.line(image, (0, i), (image_size, i), (255, 255, 255), 1)
    return image

# 应用枕形畸变
def apply_pincushion_distortion(image, k1=0.05):
    image_size = image.shape[0]
    fx, fy = image_size * 1.0, image_size * 1.0
    cx, cy = image_size / 2, image_size / 2
    camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    dist_coeffs = np.array([k1, 0, 0, 0, 0])  # 正值增加枕形畸变

    h, w = image.shape[:2]
    new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coeffs, (w, h), 1)
    distorted_image = cv2.undistort(image, camera_matrix, dist_coeffs, None, new_camera_matrix)
    return distorted_image

# 去除枕形畸变
def remove_pincushion_distortion(image, k1=0.0005):
    image_size = image.shape[0]
    fx, fy = image_size * 1.0, image_size * 1.0
    cx, cy = image_size / 2, image_size / 2
    camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    dist_coeffs = np.array([-k1, 0, 0, 0, 0])  # 负值去除枕形畸变

    h, w = image.shape[:2]
    new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coeffs, (w, h), 1)
    undistorted_image = cv2.undistort(image, camera_matrix, dist_coeffs, None, new_camera_matrix)
    return undistorted_image

# 主函数
if __name__ == "__main__":
    original_grid = create_grid()
    distorted_grid = apply_pincushion_distortion(original_grid,k1=-0.2)
    undistorted_grid = remove_pincushion_distortion(distorted_grid,k1=-0.2-0.2)

    # 使用 OpenCV 展示图像
    cv2.imshow('Original Image', original_grid)
    cv2.imshow('Pincushion Distorted Image', distorted_grid)
    cv2.imshow('Undistorted Image', undistorted_grid)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

去枕形畸变失败

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 创建一个带有枕形畸变的网格图像
def create_pincushion_distorted_grid(image_size=512, grid_size=20):
    image = np.zeros((image_size, image_size, 3), dtype=np.uint8)
    for i in range(0, image_size, grid_size):
        cv2.line(image, (i, 0), (i, image_size), (255, 255, 255), 1)
        cv2.line(image, (0, i), (image_size, i), (255, 255, 255), 1)

    k1, k2, p1, p2, k3 = -0.2, 0, 0, 0, 0  # 负数制造枕形畸变
    fx, fy = image_size, image_size
    cx, cy = image_size / 2, image_size / 2
    camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    dist_coeffs = np.array([k1, k2, p1, p2, k3])

    map1, map2 = cv2.initUndistortRectifyMap(camera_matrix, dist_coeffs, None, camera_matrix, (image_size, image_size), 5)
    distorted_image = cv2.remap(image, map1, map2, cv2.INTER_LINEAR)

    return image, distorted_image, camera_matrix, dist_coeffs

# 去除枕形畸变
def undistort_image(image, camera_matrix, dist_coeffs):
    h, w = image.shape[:2]
    new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coeffs, (w, h), 1, (w, h))
    undistorted_image = cv2.undistort(image, camera_matrix, dist_coeffs, None, new_camera_matrix)
    return undistorted_image

# 主函数
if __name__ == "__main__":
    original_grid, distorted_grid, camera_matrix, dist_coeffs = create_pincushion_distorted_grid()

    # 手动生成去畸变的映射
    map1, map2 = cv2.initUndistortRectifyMap(camera_matrix, dist_coeffs, None, camera_matrix, (original_grid.shape[1], original_grid.shape[0]), cv2.CV_32FC1)
    undistorted_grid = cv2.remap(distorted_grid, map1, map2, cv2.INTER_LINEAR)

    # 使用 OpenCV 展示图像
    cv2.imshow('Original Image', original_grid)
    cv2.imshow('Distorted Image', distorted_grid)
    cv2.imshow('Undistorted Image', undistorted_grid)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
相关推荐
列兵阿甘18 分钟前
知微传感Dkam系列3D相机SDK例程篇:Python获取内外参
python·数码相机·3d
格林威3 小时前
UV 紫外相机在半导体制造领域的应用
人工智能·数码相机·opencv·计算机视觉·视觉检测·制造·uv
柔情的菜刀16 小时前
基于偏振相机---太阳子午线计算技术
数码相机
格林威21 小时前
近红外相机在半导体制造领域的应用
大数据·人工智能·深度学习·数码相机·视觉检测·制造·工业相机
qq_526099131 天前
工业级图像采集卡:工业智能化进程中的核心视觉中枢
数码相机
ARM+FPGA+AI工业主板定制专家2 天前
【JETSON+FPGA+GMSL】实测分享 | 如何实现激光雷达与摄像头高精度时间同步?
人工智能·数码相机·机器学习·fpga开发·机器人·自动驾驶
ARM+FPGA+AI工业主板定制专家2 天前
基于JETSON+FPGA+GMSL相机 vs 传统工业相机:高动态范围与低延迟如何重塑机器感知视觉?
人工智能·数码相机·机器学习·自动驾驶
咸鱼の猫2 天前
相机帧解析
数码相机
放羊郎2 天前
基于RTAB-Map和RRT的自主导航方案
人工智能·数码相机·计算机视觉
人类发明了工具3 天前
【机器视觉-基础知识】三角测量(Triangulation)
数码相机