CPU架构 -- ARMv7与ARMv8协处理器比较

ARM v7 和 ARM v8 的协处理器比较

相同点

  1. 功能扩展

    • 两个架构中的协处理器都用于扩展处理器的功能,包括但不限于浮点运算、SIMD(Single Instruction Multiple Data)运算、系统控制寄存器访问等。
  2. 协处理器接口指令

    • ARM v7和ARM v8(AArch32状态下)都使用MCR(Move to Coprocessor from ARM Register)和MRC(Move to ARM Register from Coprocessor)指令与协处理器进行交互。
  3. 寄存器访问

    • 两个架构中,协处理器都通过寄存器访问来配置和控制系统功能。

差异点

架构模式

  1. ARM v7

    • 支持ARM和Thumb两种指令集模式,主要是32位指令集架构。
    • 主要协处理器有VFP(Vector Floating Point)、NEON(用于SIMD运算)和CP15(系统控制协处理器)。
  2. ARM v8

    • 支持AArch32和AArch64两种状态,可以执行32位和64位指令。
    • AArch64状态下,浮点和SIMD运算单元被合并为一个称为"Advanced SIMD"的单元,系统控制更多通过系统寄存器完成。

协处理器实现方式

  1. ARM v7

    • 通过协处理器寄存器(如CP15)进行系统控制。协处理器可以通过指令访问,如MCR和MRC。
  2. ARM v8

    • 在AArch64状态下,采用系统寄存器(System Register)的概念,部分协处理器功能被集成到这些系统寄存器中,简化了指令集。
    • 使用新的MSR(Move to System Register)和MRS(Move from System Register)指令来访问系统寄存器。

指令集差异

  1. ARM v7

    • 使用MCR和MRC指令与协处理器交互,寄存器访问复杂且指令较多。
  2. ARM v8

    • 在AArch64状态下,使用MSR和MRS指令简化系统寄存器访问,指令集更加优化和简洁。

示例对比

ARM v7 示例

与CP15协处理器交互的代码:

assembly 复制代码
MCR p15, 0, r0, c1, c0, 0  // 将r0的值写入协处理器CP15的c1寄存器
MRC p15, 0, r0, c1, c0, 0  // 从协处理器CP15的c1寄存器读取值到r0

ARM v8 示例

在AArch64状态下使用系统寄存器的代码:

assembly 复制代码
MSR SCTLR_EL1, x0  // 将x0的值写入SCTLR_EL1系统控制寄存器
MRS x0, SCTLR_EL1  // 从SCTLR_EL1系统控制寄存器读取值到x0

协处理器功能的详细差异

  1. 浮点和SIMD运算单元

    • ARM v7:VFP和NEON是独立的协处理器单元,分别处理浮点和SIMD运算。
    • ARM v8:AArch64状态下,VFP和NEON合并为一个称为"Advanced SIMD"的单元,简化了寄存器和指令操作。
  2. 系统控制

    • ARM v7:系统控制主要通过CP15协处理器完成,有多个寄存器组来配置系统行为。
    • ARM v8:系统控制主要通过系统寄存器(如SCTLR_EL1)完成,简化了寄存器的数量和访问方式。

具体的寄存器和功能差异

ARM v7 CP15寄存器

  • SCTLR(System Control Register):控制系统行为的主要寄存器。
  • TTBR0/TTBR1(Translation Table Base Register 0/1):用于存储页表基地址。
  • DACR(Domain Access Control Register):控制内存访问权限。

ARM v8 系统寄存器

  • SCTLR_EL1:AArch64状态下的系统控制寄存器。
  • TTBR0_EL1/TTBR1_EL1:AArch64状态下的页表基地址寄存器。
  • DAIF(Debug, Asynchronous, IRQ, FIQ mask bits):用于控制中断屏蔽。

总结

ARM v8在协处理器设计上做了许多改进,使得系统寄存器访问更为简洁和高效。通过合并浮点和SIMD单元以及优化系统控制寄存器,ARM v8不仅提高了性能,还简化了编程模型,适应了64位计算的需求。这些改进为开发者提供了更强大的工具和更高效的工作流程。

相关推荐
梦想画家4 分钟前
Apache Druid 架构深度解析:构建高性能分布式数据存储系统
架构·druid·数据工程
PWRJOY5 分钟前
嵌入式常见 CPU 架构
架构
前端付豪2 小时前
揭秘网易统一日志采集与故障定位平台揭秘:如何在亿级请求中1分钟定位线上异常
前端·后端·架构
未来影子3 小时前
SpringAI(GA):Nacos3下的分布式MCP
后端·架构·ai编程
小马哥编程3 小时前
【iSAQB软件架构】软件架构中构建块的视图:黑箱、灰箱和白箱及其交互机制
microsoft·架构·系统架构·交互
DemonAvenger3 小时前
Go并发编程:内存同步与竞态处理
性能优化·架构·go
SimonKing6 小时前
吊打面试官系列:深入理解Spring的IOC容器
java·后端·架构
gyx_这个杀手不太冷静7 小时前
Vue3 响应式系统探秘:watch 如何成为你的数据侦探
前端·vue.js·架构
eternal__day8 小时前
微服务架构下的服务注册与发现:Eureka 深度解析
java·spring cloud·微服务·eureka·架构·maven
Wang's Blog9 小时前
Monorepo架构: Nx Cloud 扩展能力与缓存加速
缓存·架构