CPU架构 -- ARMv7与ARMv8协处理器比较

ARM v7 和 ARM v8 的协处理器比较

相同点

  1. 功能扩展

    • 两个架构中的协处理器都用于扩展处理器的功能,包括但不限于浮点运算、SIMD(Single Instruction Multiple Data)运算、系统控制寄存器访问等。
  2. 协处理器接口指令

    • ARM v7和ARM v8(AArch32状态下)都使用MCR(Move to Coprocessor from ARM Register)和MRC(Move to ARM Register from Coprocessor)指令与协处理器进行交互。
  3. 寄存器访问

    • 两个架构中,协处理器都通过寄存器访问来配置和控制系统功能。

差异点

架构模式

  1. ARM v7

    • 支持ARM和Thumb两种指令集模式,主要是32位指令集架构。
    • 主要协处理器有VFP(Vector Floating Point)、NEON(用于SIMD运算)和CP15(系统控制协处理器)。
  2. ARM v8

    • 支持AArch32和AArch64两种状态,可以执行32位和64位指令。
    • AArch64状态下,浮点和SIMD运算单元被合并为一个称为"Advanced SIMD"的单元,系统控制更多通过系统寄存器完成。

协处理器实现方式

  1. ARM v7

    • 通过协处理器寄存器(如CP15)进行系统控制。协处理器可以通过指令访问,如MCR和MRC。
  2. ARM v8

    • 在AArch64状态下,采用系统寄存器(System Register)的概念,部分协处理器功能被集成到这些系统寄存器中,简化了指令集。
    • 使用新的MSR(Move to System Register)和MRS(Move from System Register)指令来访问系统寄存器。

指令集差异

  1. ARM v7

    • 使用MCR和MRC指令与协处理器交互,寄存器访问复杂且指令较多。
  2. ARM v8

    • 在AArch64状态下,使用MSR和MRS指令简化系统寄存器访问,指令集更加优化和简洁。

示例对比

ARM v7 示例

与CP15协处理器交互的代码:

assembly 复制代码
MCR p15, 0, r0, c1, c0, 0  // 将r0的值写入协处理器CP15的c1寄存器
MRC p15, 0, r0, c1, c0, 0  // 从协处理器CP15的c1寄存器读取值到r0

ARM v8 示例

在AArch64状态下使用系统寄存器的代码:

assembly 复制代码
MSR SCTLR_EL1, x0  // 将x0的值写入SCTLR_EL1系统控制寄存器
MRS x0, SCTLR_EL1  // 从SCTLR_EL1系统控制寄存器读取值到x0

协处理器功能的详细差异

  1. 浮点和SIMD运算单元

    • ARM v7:VFP和NEON是独立的协处理器单元,分别处理浮点和SIMD运算。
    • ARM v8:AArch64状态下,VFP和NEON合并为一个称为"Advanced SIMD"的单元,简化了寄存器和指令操作。
  2. 系统控制

    • ARM v7:系统控制主要通过CP15协处理器完成,有多个寄存器组来配置系统行为。
    • ARM v8:系统控制主要通过系统寄存器(如SCTLR_EL1)完成,简化了寄存器的数量和访问方式。

具体的寄存器和功能差异

ARM v7 CP15寄存器

  • SCTLR(System Control Register):控制系统行为的主要寄存器。
  • TTBR0/TTBR1(Translation Table Base Register 0/1):用于存储页表基地址。
  • DACR(Domain Access Control Register):控制内存访问权限。

ARM v8 系统寄存器

  • SCTLR_EL1:AArch64状态下的系统控制寄存器。
  • TTBR0_EL1/TTBR1_EL1:AArch64状态下的页表基地址寄存器。
  • DAIF(Debug, Asynchronous, IRQ, FIQ mask bits):用于控制中断屏蔽。

总结

ARM v8在协处理器设计上做了许多改进,使得系统寄存器访问更为简洁和高效。通过合并浮点和SIMD单元以及优化系统控制寄存器,ARM v8不仅提高了性能,还简化了编程模型,适应了64位计算的需求。这些改进为开发者提供了更强大的工具和更高效的工作流程。

相关推荐
程序员ys40 分钟前
微前端是什么?
微服务·架构·前端框架
Goboy1 小时前
从零开始,用JupyterLab和TensorFlow打造你的第一个猫狗识别模型
后端·程序员·架构
聚搜云—服务器分享1 小时前
阿里云国际站代理商:传统IOE架构向云原生迁移的关键挑战有哪些?
阿里云·云原生·架构
鲨鲨1081 小时前
隐匿视角:七款局域网屏幕监控软件对企业数字神经系统架构的重塑效应探究
架构
威视锐科技8 小时前
软件定义无线电36
网络·网络协议·算法·fpga开发·架构·信息与通信
JINX的诅咒8 小时前
CORDIC算法:三角函数的硬件加速革命——从数学原理到FPGA实现的超高效计算方案
算法·数学建模·fpga开发·架构·信号处理·硬件加速器
草捏子11 小时前
从CPU原理看:为什么你的代码会让CPU"原地爆炸"?
后端·cpu
二进制coder15 小时前
DFX架构详解:构建面向全生命周期的卓越设计体系
架构
Mia@16 小时前
网络通信&微服务
微服务·云原生·架构
Cloud_.19 小时前
用Nginx实现负载均衡与高可用架构(整合Keepalived)
nginx·架构·负载均衡·keepalived