自下而上的选股与自上而下的选股

一起学习了《战胜华尔街》,不知道大家有没有这么一种感受:林奇的选股方法是典型的自下而上的选股方法。虽然这一点没有单独拎出来讨论过,但在《从低迷中寻找卓越》《如何通过财务指标筛选股票?》《边逛街边选股?》《好公司也需要在好的价格买入》这些笔记中都可以看出,林奇在选股是更关注的是公司本身。尽管林奇也经常同时买入同一行业的股票,比如汽车行业、储贷行业等,但更多的是因为他的资金量太大,同一行业的公司又具有一定的共性,并不是先选定行业,再从这个行业去选择公司。

与之有所不同的是,在《逆向投资 邓普顿的长赢投资法》中,从劳伦介绍的1939年邓普顿抄底美股的行为来看。邓普顿的选股方法更像是一种自上而下的选股方法。首先实在宏观上,"投资者认为美国正在倒退,将重新陷入经济衰退,纳粹即将摧毁人们的自由意志和再欧洲已经蔚为大观的现代文明",而邓普顿"对未来事态可能的进程得出了与多数人截然相反的结论",他看到了"全美举国上下各行各业在纷纷响应战争的召唤,这极有可能极大地刺激经济"。其实是在选股上,邓普顿"购买了美国两家交易所正在进行交易的、价格在1美元以下的所有股票"。最后,邓普顿并不是因为资金量太大,他拥有的资金只是向他前任老板借入的1万美元。

当然,从量化的角度来说,我觉得不需要有明确的自下而上或者自上而下的选择。至少我现在常用的因子策略里,我可以同时把宏观因子和微观因子都放进去。我需要考虑的仅仅是考虑哪些因子。不过在经历了林奇和邓普顿这两位价值投资大师的熏陶好,我越来越做点基本面分析的冲动。特别是这个月,我的量化策略表现不是很好的情况下。基本面分析当然不可能一个一个股票做下去,那就涉及到怎么去筛选。结合林奇的《从低迷中寻找卓越》和邓普顿的"冷门股"思路,我初步的想法是从每周跌幅最大的股票开始。当然,目前也仅仅只是排上日程而已。

相关推荐
绿蕉19 分钟前
智能底盘:汽车革命的“新基石”
大数据·人工智能
GAOJ_K20 分钟前
滚珠花键的使用时长与性能保持的量化关系
大数据·人工智能·科技·自动化·制造
EveryPossible33 分钟前
页面学习1
大数据
TDengine (老段)34 分钟前
网络延时对 TDengine TSDB 写入性能的影响:实验解析与实践建议
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
ZKNOW甄知科技2 小时前
AI-ITSM的时代正在到来:深度解读Gartner最新报告
大数据·运维·人工智能·低代码·网络安全·微服务·重构
xinyuan_1234562 小时前
数智化招采平台实战指南:AI如何让采购管理实现效率与价值落地
大数据·人工智能
Tezign_space2 小时前
技术实战:Crocs如何构建AI驱动的智能内容矩阵,实现内容播放量提升470%?
大数据·人工智能·矩阵·aigc·内容运营·多智能体系统·智能内容矩阵
八月瓜科技2 小时前
八月瓜科技参与“数据要素驱动产业升级”活动,分享【数据赋能科技创新全链条】
java·大数据·人工智能·科技·机器人·程序员创富
币圈菜头2 小时前
GAEA 项目 TGE 日期确认及其情感 AI 技术路径分析
人工智能·web3·去中心化·区块链
梦里不知身是客112 小时前
flink的CDC 的种类
大数据·flink