PyTorch - 神经网络基础

神经网络的主要原理包括一组基本元素,即人工神经元或感知器。它包括几个基本输入,例如 x1、x2... xn ,如果总和大于激活电位,则会产生二进制输出。

样本神经元的示意图如下所述。

产生的输出可以被认为是具有激活电位或偏差的加权和。

典型的神经网络架构如下所述。

输入和输出之间的层称为隐藏层,层之间连接的密度和类型是配置。例如,一个完全连接的配置将 L 层的所有神经元都连接到 L+1 层的神经元。对于更明显的定位,只能将一个局部邻域(比如 9 个神经元)连接到下一层。图 1-9 展示了两个具有密集连接的隐藏层。

各种类型的神经网络如下。

1.1 前馈神经网络

前馈神经网络包括神经网络族的基本单元。在这种类型的神经网络中,数据的移动是通过现有的隐藏层从输入层到输出层。一层的输出作为输入层,对网络架构中的任何类型的循环都有限制

1.2 递归神经网络

递归神经网络是指数据模式在一段时间内发生变化。在 RNN 中,相同的层被应用于在指定的神经网络中接受输入参数并显示输出参数。

可以使用 torch.nn 包构建神经网络。

这是一个简单的前馈网络。它接受输入,一个接一个地通过几个层,最后给出输出。

在 PyTorch 的帮助下,可以将以下步骤用于神经网络的典型训练过程:

  • 定义具有一些可学习参数(或权重)的神经网络。
  • 迭代输入数据集。
  • 通过网络处理输入。
  • 计算损失(输出与正确的距离有多远)。
  • 将梯度传播回网络的参数。
  • 更新网络的权重,通常使用如下所示的简单更新。

rule: weight = weight -learning_rate * gradient

相关推荐
海边夕阳20062 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI2 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_3 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭3 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT3 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"3 小时前
专项智能练习(课程类型)
人工智能
2501_918126914 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home4 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构
飞哥数智坊5 小时前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek