PyTorch - 神经网络基础

神经网络的主要原理包括一组基本元素,即人工神经元或感知器。它包括几个基本输入,例如 x1、x2... xn ,如果总和大于激活电位,则会产生二进制输出。

样本神经元的示意图如下所述。

产生的输出可以被认为是具有激活电位或偏差的加权和。

典型的神经网络架构如下所述。

输入和输出之间的层称为隐藏层,层之间连接的密度和类型是配置。例如,一个完全连接的配置将 L 层的所有神经元都连接到 L+1 层的神经元。对于更明显的定位,只能将一个局部邻域(比如 9 个神经元)连接到下一层。图 1-9 展示了两个具有密集连接的隐藏层。

各种类型的神经网络如下。

1.1 前馈神经网络

前馈神经网络包括神经网络族的基本单元。在这种类型的神经网络中,数据的移动是通过现有的隐藏层从输入层到输出层。一层的输出作为输入层,对网络架构中的任何类型的循环都有限制

1.2 递归神经网络

递归神经网络是指数据模式在一段时间内发生变化。在 RNN 中,相同的层被应用于在指定的神经网络中接受输入参数并显示输出参数。

可以使用 torch.nn 包构建神经网络。

这是一个简单的前馈网络。它接受输入,一个接一个地通过几个层,最后给出输出。

在 PyTorch 的帮助下,可以将以下步骤用于神经网络的典型训练过程:

  • 定义具有一些可学习参数(或权重)的神经网络。
  • 迭代输入数据集。
  • 通过网络处理输入。
  • 计算损失(输出与正确的距离有多远)。
  • 将梯度传播回网络的参数。
  • 更新网络的权重,通常使用如下所示的简单更新。

rule: weight = weight -learning_rate * gradient

相关推荐
腾讯云开发者12 分钟前
腾讯云TVP走进泸州老窖,解码AI数智未来
人工智能
我是王大你是谁12 分钟前
详细比较 QLORA、LORA、MORA、LORI 常见参数高效微调方法
人工智能·llm
未来智慧谷15 分钟前
国产具身大模型首入汽车工厂,全场景验证开启工业智能新阶段
人工智能·汽车·智能机器人
Jamence1 小时前
多模态大语言模型arxiv论文略读(113)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
haf-Lydia1 小时前
金融科技的数字底座
人工智能·科技·金融
shengjk11 小时前
多智能体大语言模型系统频频翻车?三大失败根源与解决方案全解析
人工智能
北极的树1 小时前
谁说AI只会模仿,从Google AlphaEvolve项目看算法的自主创新
人工智能·算法·gemini
安思派Anspire1 小时前
用 LangGraph 构建第一个 AI 智能体完全指南(一)
人工智能
广州正荣1 小时前
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
人工智能·爬虫·科技
加油搞钱加油搞钱1 小时前
鹰盾加密器基于AI的视频个性化压缩技术深度解析:从智能分析到无损压缩实践
人工智能·音视频·视频加密·鹰盾加密·鹰盾播放器