PyTorch - 神经网络基础

神经网络的主要原理包括一组基本元素,即人工神经元或感知器。它包括几个基本输入,例如 x1、x2... xn ,如果总和大于激活电位,则会产生二进制输出。

样本神经元的示意图如下所述。

产生的输出可以被认为是具有激活电位或偏差的加权和。

典型的神经网络架构如下所述。

输入和输出之间的层称为隐藏层,层之间连接的密度和类型是配置。例如,一个完全连接的配置将 L 层的所有神经元都连接到 L+1 层的神经元。对于更明显的定位,只能将一个局部邻域(比如 9 个神经元)连接到下一层。图 1-9 展示了两个具有密集连接的隐藏层。

各种类型的神经网络如下。

1.1 前馈神经网络

前馈神经网络包括神经网络族的基本单元。在这种类型的神经网络中,数据的移动是通过现有的隐藏层从输入层到输出层。一层的输出作为输入层,对网络架构中的任何类型的循环都有限制

1.2 递归神经网络

递归神经网络是指数据模式在一段时间内发生变化。在 RNN 中,相同的层被应用于在指定的神经网络中接受输入参数并显示输出参数。

可以使用 torch.nn 包构建神经网络。

这是一个简单的前馈网络。它接受输入,一个接一个地通过几个层,最后给出输出。

在 PyTorch 的帮助下,可以将以下步骤用于神经网络的典型训练过程:

  • 定义具有一些可学习参数(或权重)的神经网络。
  • 迭代输入数据集。
  • 通过网络处理输入。
  • 计算损失(输出与正确的距离有多远)。
  • 将梯度传播回网络的参数。
  • 更新网络的权重,通常使用如下所示的简单更新。

rule: weight = weight -learning_rate * gradient

相关推荐
PPT百科几秒前
PPT导出为图片的格式选择:JPG与PNG的区别
人工智能·经验分享·职场和发展·powerpoint·职场·效率工具
aneasystone本尊1 分钟前
重温 Java 21 之作用域值
人工智能
阿_旭3 分钟前
基于深度学习的车载视角路面病害检测系统【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·路面病害检测
知识搬运工人24 分钟前
真实的大模型中,embedding映射的高维矩阵维度和 attention矩阵运算的规模尺寸?
人工智能
weixin_446260852 小时前
LocalAI:一个免费开源的AI替代方案,让创意更自由!
人工智能·开源
CAE3203 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
骄傲的心别枯萎3 小时前
RV1126 NO.37:OPENCV的图像叠加功能
人工智能·opencv·计算机视觉·音视频·视频编解码·rv1126
HyperAI超神经3 小时前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
TG:@yunlaoda360 云老大5 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云