PyTorch - 神经网络基础

神经网络的主要原理包括一组基本元素,即人工神经元或感知器。它包括几个基本输入,例如 x1、x2... xn ,如果总和大于激活电位,则会产生二进制输出。

样本神经元的示意图如下所述。

产生的输出可以被认为是具有激活电位或偏差的加权和。

典型的神经网络架构如下所述。

输入和输出之间的层称为隐藏层,层之间连接的密度和类型是配置。例如,一个完全连接的配置将 L 层的所有神经元都连接到 L+1 层的神经元。对于更明显的定位,只能将一个局部邻域(比如 9 个神经元)连接到下一层。图 1-9 展示了两个具有密集连接的隐藏层。

各种类型的神经网络如下。

1.1 前馈神经网络

前馈神经网络包括神经网络族的基本单元。在这种类型的神经网络中,数据的移动是通过现有的隐藏层从输入层到输出层。一层的输出作为输入层,对网络架构中的任何类型的循环都有限制

1.2 递归神经网络

递归神经网络是指数据模式在一段时间内发生变化。在 RNN 中,相同的层被应用于在指定的神经网络中接受输入参数并显示输出参数。

可以使用 torch.nn 包构建神经网络。

这是一个简单的前馈网络。它接受输入,一个接一个地通过几个层,最后给出输出。

在 PyTorch 的帮助下,可以将以下步骤用于神经网络的典型训练过程:

  • 定义具有一些可学习参数(或权重)的神经网络。
  • 迭代输入数据集。
  • 通过网络处理输入。
  • 计算损失(输出与正确的距离有多远)。
  • 将梯度传播回网络的参数。
  • 更新网络的权重,通常使用如下所示的简单更新。

rule: weight = weight -learning_rate * gradient

相关推荐
不大姐姐AI智能体24 分钟前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
虹科网络安全1 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
Deepoch1 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
2501_940198691 小时前
从“数据孤岛”到“智慧医脑”:实战 MCP 协议安全接入 HIS 系统,构建医疗级 AI 辅助诊断合规中台
人工智能·安全·asp.net
kuankeTech2 小时前
解决内外贸双轨制难题,外贸ERP智能引擎同步管理国内外合规与标准
大数据·人工智能·数据可视化·软件开发·erp
Hcoco_me2 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML2 小时前
第九章:EM 算法
人工智能·算法·机器学习
q_35488851533 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
Yeats_Liao3 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
陆研一3 小时前
2026国内无痛使用Gemini 3与GPT-5.2
人工智能·ai·chatgpt