pytorch跑手写体实验

目录

1、环境条件

2、代码实现

3、总结


1、环境条件

  1. pycharm编译器
  2. pytorch依赖
  3. matplotlib依赖
  4. numpy依赖等等

2、代码实现

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 定义数据变换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

# 加载 MNIST 数据集
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)

# 定义 LeNet-5 模型
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=2)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(torch.relu(self.conv1(x)))
        x = self.pool(torch.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 初始化模型、损失函数和优化器
model = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
epochs = 5
for epoch in range(epochs):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 100 == 99:
            print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 100:.3f}')
            running_loss = 0.0

print('Finished Training')

# 保存模型
torch.save(model.state_dict(), 'lenet5.pth')
print('Model saved to lenet5.pth')

# 加载模型
model = LeNet5()
model.load_state_dict(torch.load('lenet5.pth'))
model.to(device)
model.eval()

# 在测试集上评估模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy on the test set: {100 * correct / total:.2f}%')

# 加载并预处理本地图片进行预测
from PIL import Image

def load_and_preprocess_image(image_path):
    img = Image.open(image_path).convert('L')  # 转为灰度图
    img = img.resize((28, 28))
    img = np.array(img, dtype=np.float32)
    img = (img / 255.0 - 0.5) / 0.5  # 归一化到[-1, 1]
    img = torch.tensor(img).unsqueeze(0).unsqueeze(0)  # 添加批次和通道维度
    return img.to(device)

# 预测本地图片
image_path = '4.png'  # 替换为你的本地图片路径
img = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
model.eval()
with torch.no_grad():
    outputs = model(img)
    _, predicted = torch.max(outputs, 1)

# 打印预测结果
predicted_label = predicted.item()
print(f'预测结果: {predicted_label}')

# 显示图片及预测结果
img_np = img.cpu().numpy().squeeze()
plt.imshow(img_np, cmap='gray')
plt.title(f'预测结果: {predicted_label}')
plt.show()

解释:torch.save()方法完成模型的保存,image_path为本地图片,用于测试

3、总结

安装环境是比较难的点,均使用pip install 。。指令进行依赖环境的安装,其他的比较简单。

学习之所以会想睡觉,是因为那是梦开始的地方。

ଘ(੭ˊᵕˋ)੭ (开心) ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)

------不写代码不会凸的小刘

相关推荐
汗流浃背了吧,老弟!7 分钟前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
软件聚导航16 分钟前
从 AI 画马到马年红包封面,我还做了一个小程序
人工智能·chatgpt
啊森要自信31 分钟前
CANN ops-cv:AI 硬件端视觉算法推理训练的算子性能调优与实战应用详解
人工智能·算法·cann
要加油哦~34 分钟前
AI | 实践教程 - ScreenCoder | 多agents前端代码生成
前端·javascript·人工智能
玄同76535 分钟前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae
新缸中之脑37 分钟前
用RedisVL构建长期记忆
人工智能
J_Xiong01171 小时前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper1 小时前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销
小瑞瑞acd1 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-02-06)
人工智能·ai·大模型·github·ai教程