pytorch跑手写体实验

目录

1、环境条件

2、代码实现

3、总结


1、环境条件

  1. pycharm编译器
  2. pytorch依赖
  3. matplotlib依赖
  4. numpy依赖等等

2、代码实现

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 定义数据变换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

# 加载 MNIST 数据集
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)

# 定义 LeNet-5 模型
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=2)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(torch.relu(self.conv1(x)))
        x = self.pool(torch.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 初始化模型、损失函数和优化器
model = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
epochs = 5
for epoch in range(epochs):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 100 == 99:
            print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 100:.3f}')
            running_loss = 0.0

print('Finished Training')

# 保存模型
torch.save(model.state_dict(), 'lenet5.pth')
print('Model saved to lenet5.pth')

# 加载模型
model = LeNet5()
model.load_state_dict(torch.load('lenet5.pth'))
model.to(device)
model.eval()

# 在测试集上评估模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy on the test set: {100 * correct / total:.2f}%')

# 加载并预处理本地图片进行预测
from PIL import Image

def load_and_preprocess_image(image_path):
    img = Image.open(image_path).convert('L')  # 转为灰度图
    img = img.resize((28, 28))
    img = np.array(img, dtype=np.float32)
    img = (img / 255.0 - 0.5) / 0.5  # 归一化到[-1, 1]
    img = torch.tensor(img).unsqueeze(0).unsqueeze(0)  # 添加批次和通道维度
    return img.to(device)

# 预测本地图片
image_path = '4.png'  # 替换为你的本地图片路径
img = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
model.eval()
with torch.no_grad():
    outputs = model(img)
    _, predicted = torch.max(outputs, 1)

# 打印预测结果
predicted_label = predicted.item()
print(f'预测结果: {predicted_label}')

# 显示图片及预测结果
img_np = img.cpu().numpy().squeeze()
plt.imshow(img_np, cmap='gray')
plt.title(f'预测结果: {predicted_label}')
plt.show()

解释:torch.save()方法完成模型的保存,image_path为本地图片,用于测试

3、总结

安装环境是比较难的点,均使用pip install 。。指令进行依赖环境的安装,其他的比较简单。

学习之所以会想睡觉,是因为那是梦开始的地方。

ଘ(੭ˊᵕˋ)੭ (开心) ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)

------不写代码不会凸的小刘

相关推荐
Blossom.118几秒前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn
明朝百晓生3 分钟前
深入理解Vapnik-Chervonenkis(VC)维度:机器学习泛化能力的理论基础
人工智能·机器学习
信息快讯4 分钟前
机器学习驱动的智能化电池管理技术与应用
人工智能·机器学习·锂离子电池
勤奋的大熊猫4 分钟前
机器学习路径规划中的 net 和 netlist 分别是什么?
人工智能·机器学习·自动寻路
还有糕手6 分钟前
西南交通大学【机器学习实验6】
人工智能·机器学习
亚力山大抵10 分钟前
实验六-使用PyMySQL数据存储的Flask登录系统-实验七-集成Flask-SocketIO的实时通信系统
后端·python·flask
showyoui18 分钟前
Python 闭包(Closure)实战总结
开发语言·python
静心问道35 分钟前
self-consistency:自洽性提升语言模型中的链式思维推理能力
人工智能·语言模型·大模型
上海锝秉工控1 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
amazinging1 小时前
北京-4年功能测试2年空窗-报培训班学测开-第四十一天
python·学习·appium