pytorch跑手写体实验

目录

1、环境条件

2、代码实现

3、总结


1、环境条件

  1. pycharm编译器
  2. pytorch依赖
  3. matplotlib依赖
  4. numpy依赖等等

2、代码实现

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 定义数据变换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

# 加载 MNIST 数据集
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)

# 定义 LeNet-5 模型
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=2)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(torch.relu(self.conv1(x)))
        x = self.pool(torch.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 初始化模型、损失函数和优化器
model = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
epochs = 5
for epoch in range(epochs):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 100 == 99:
            print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 100:.3f}')
            running_loss = 0.0

print('Finished Training')

# 保存模型
torch.save(model.state_dict(), 'lenet5.pth')
print('Model saved to lenet5.pth')

# 加载模型
model = LeNet5()
model.load_state_dict(torch.load('lenet5.pth'))
model.to(device)
model.eval()

# 在测试集上评估模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy on the test set: {100 * correct / total:.2f}%')

# 加载并预处理本地图片进行预测
from PIL import Image

def load_and_preprocess_image(image_path):
    img = Image.open(image_path).convert('L')  # 转为灰度图
    img = img.resize((28, 28))
    img = np.array(img, dtype=np.float32)
    img = (img / 255.0 - 0.5) / 0.5  # 归一化到[-1, 1]
    img = torch.tensor(img).unsqueeze(0).unsqueeze(0)  # 添加批次和通道维度
    return img.to(device)

# 预测本地图片
image_path = '4.png'  # 替换为你的本地图片路径
img = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
model.eval()
with torch.no_grad():
    outputs = model(img)
    _, predicted = torch.max(outputs, 1)

# 打印预测结果
predicted_label = predicted.item()
print(f'预测结果: {predicted_label}')

# 显示图片及预测结果
img_np = img.cpu().numpy().squeeze()
plt.imshow(img_np, cmap='gray')
plt.title(f'预测结果: {predicted_label}')
plt.show()

解释:torch.save()方法完成模型的保存,image_path为本地图片,用于测试

3、总结

安装环境是比较难的点,均使用pip install 。。指令进行依赖环境的安装,其他的比较简单。

学习之所以会想睡觉,是因为那是梦开始的地方。

ଘ(੭ˊᵕˋ)੭ (开心) ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)

------不写代码不会凸的小刘

相关推荐
悟纤几秒前
Suno 摇滚歌曲创作提示词全解析 | Suno高级篇 | 第21篇
人工智能·suno·suno ai·suno api·ai music
乙真仙人3 分钟前
Claude Skills 的本质
人工智能·大模型·skills
小小测试开发6 分钟前
Python bool 类型常用方法与实战指南:极简类型的高效用法
python
百家方案6 分钟前
2026年数字孪生一体化综合解决方案-全1272下载
人工智能·智慧城市·数字孪生
GISer_Jing10 分钟前
AI Coding学习——dw|ali(持续更新)
人工智能·学习·prompt·aigc
小北方城市网20 分钟前
SpringBoot 集成 RabbitMQ 实战(消息队列解耦与削峰):实现高可靠异步通信
java·spring boot·python·微服务·rabbitmq·java-rabbitmq·数据库架构
百锦再20 分钟前
国产数据库现状与技术演进
数据库·python·plotly·flask·virtualenv·pygame·tornado
Piar1231sdafa25 分钟前
YOLO11-Seg与Fasternet-BiFPN结合的枣果实品质检测系统实现详解
python
weixin_3981877526 分钟前
YOLOv11 PPHGNetV2主干网络集成指南
人工智能·yolo
minglie127 分钟前
micropython 按键
python