pytorch跑手写体实验

目录

1、环境条件

2、代码实现

3、总结


1、环境条件

  1. pycharm编译器
  2. pytorch依赖
  3. matplotlib依赖
  4. numpy依赖等等

2、代码实现

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 定义数据变换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

# 加载 MNIST 数据集
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)

# 定义 LeNet-5 模型
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=2)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(torch.relu(self.conv1(x)))
        x = self.pool(torch.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 初始化模型、损失函数和优化器
model = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
epochs = 5
for epoch in range(epochs):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 100 == 99:
            print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 100:.3f}')
            running_loss = 0.0

print('Finished Training')

# 保存模型
torch.save(model.state_dict(), 'lenet5.pth')
print('Model saved to lenet5.pth')

# 加载模型
model = LeNet5()
model.load_state_dict(torch.load('lenet5.pth'))
model.to(device)
model.eval()

# 在测试集上评估模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy on the test set: {100 * correct / total:.2f}%')

# 加载并预处理本地图片进行预测
from PIL import Image

def load_and_preprocess_image(image_path):
    img = Image.open(image_path).convert('L')  # 转为灰度图
    img = img.resize((28, 28))
    img = np.array(img, dtype=np.float32)
    img = (img / 255.0 - 0.5) / 0.5  # 归一化到[-1, 1]
    img = torch.tensor(img).unsqueeze(0).unsqueeze(0)  # 添加批次和通道维度
    return img.to(device)

# 预测本地图片
image_path = '4.png'  # 替换为你的本地图片路径
img = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
model.eval()
with torch.no_grad():
    outputs = model(img)
    _, predicted = torch.max(outputs, 1)

# 打印预测结果
predicted_label = predicted.item()
print(f'预测结果: {predicted_label}')

# 显示图片及预测结果
img_np = img.cpu().numpy().squeeze()
plt.imshow(img_np, cmap='gray')
plt.title(f'预测结果: {predicted_label}')
plt.show()

解释:torch.save()方法完成模型的保存,image_path为本地图片,用于测试

3、总结

安装环境是比较难的点,均使用pip install 。。指令进行依赖环境的安装,其他的比较简单。

学习之所以会想睡觉,是因为那是梦开始的地方。

ଘ(੭ˊᵕˋ)੭ (开心) ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)

------不写代码不会凸的小刘

相关推荐
charley.layabox2 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人2 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝4 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z4 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
江沉晚呤时5 小时前
在 C# 中调用 Python 脚本:实现跨语言功能集成
python·microsoft·c#·.net·.netcore·.net core
大知闲闲哟5 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊5 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli75 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
电脑能手5 小时前
如何远程访问在WSL运行的Jupyter Notebook
ide·python·jupyter
Edward-tan6 小时前
CCPD 车牌数据集提取标注,并转为标准 YOLO 格式
python