文章目录
一、线程隔离
线程隔离有两种方式实现:
- 线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果
- 信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。
Sentinel的线程隔离就是基于信号量隔离实现的。
二、滑动窗口算法
在熔断功能中,需要统计异常请求或慢请求比例,也就是计数。在限流的时候,要统计每秒钟的QPS,同样是计数。
设置一个窗口的大小,然后窗口是匀速往前滑动的,在一段时间范围内,请求落在同一个窗口的数量大于窗口阈值,就拒绝该请求。
sentinel中采用的计数器算法就是滑动窗口计数算法。
三、令牌桶算法
如图:
说明:
- 以固定的速率生成令牌,存入令牌桶中,如果令牌桶满了以后,多余令牌丢弃。
- 请求进入后,必须先尝试从桶中获取令牌,获取到令牌后才可以被处理。
- 如果令牌桶中没有令牌,则请求等待或丢弃。
基于令牌桶算法,每秒产生的令牌数量基本就是QPS上限。
当然也有例外情况,例如:
- 某一秒令牌桶中产生了很多令牌,达到令牌桶上限N,缓存在令牌桶中,但是这一秒没有请求进入。
- 下一秒的前半秒涌入了超过2N个请求,之前缓存的令牌桶的令牌耗尽,同时这一秒又生成了N个令牌,于是总共放行了2N个请求。超出了我们设定的QPS阈值。
因此,在使用令牌桶算法时,尽量不要将令牌上限设定到服务能承受的QPS上限。而是预留一定的波动空间,这样我们才能应对突发流量。
Sentinel中的热点参数限流正是基于令牌桶算法实现的。
四、漏桶算法
漏桶算法与令牌桶相似,但在设计上更适合应对并发波动较大的场景。
简单来说就是请求到达后不是直接处理,而是先放入一个队列。而后以固定的速率从队列中取出并处理请求。之所以叫漏桶算法,就是把请求看做水,队列看做是一个漏了的桶。
如图:
说明:
- 将每个请求视作"水滴"放入"漏桶"进行存储;
- "漏桶"以固定速率向外"漏"出请求来执行,如果"漏桶"空了则停止"漏水";
- 如果"漏桶"满了则多余的"水滴"会被直接丢弃。
漏桶的优势就是流量整型,不管并发量如何波动,经过漏桶处理后的请求一定是相对平滑的曲线。
sentinel限流中的排队等待功能正是基于漏桶算法实现的。