深度学习基础以及vgg16讲解

一 什么是卷积

上图所示,为图像边缘提取得一个卷积过程,卷积核就是计算当前像素左右两边得像素差,这个差值越大代表越可能是图像边缘。因此当实现其它功能时,只需要调整卷积核得参数即可。深度学习的训练其实就是在确定这些参数。

二 padding

三 池化pooling

四 什么是激活函数

这里只能使用非线性函数。

五 全连接层

六 多通道卷积

七 softmax

入门级都能看懂的softmax详解-CSDN博客

八 vgg16

VGG中根据卷积核大小和卷积层数目的不同,可分为A,A-LRN,B,C,D,E共6个配置(ConvNet Configuration),其中以D,E两种配置较为常用,分别称为VGG16和VGG19。

VGG16共包含:

  • 13个卷积层(Convolutional Layer),分别用conv3-XXX表示
  • 3个全连接层(Fully connected Layer),分别用FC-XXXX表示
  • 5个池化层(Pool layer),分别用maxpool表示

其中,卷积层和全连接层具有权重系数,因此也被称为权重层,总数目为13+3=16,这即是
VGG16中16的来源。(池化层不涉及权重,因此不属于权重层,不被计数)。

8.1VGG16网络


224x224x3的彩色图表示3通道的长和宽都为224的图像数据,也是网络的输入层(彩色图像有RGB三个颜色通道,分别是红、绿、蓝三个通道,这三个通道的像素可以用二维数组来表示,其中像素值由0到255的数字来表示。)

卷积计算

1)输入图像尺寸为224x224x3,经64个通道为3的3x3的卷积核 ,步长为1,padding=same填充,卷积两次,再经ReLU激活,输出的尺寸大小为224x224x64
2)经max pooling(最大化池化),滤波器为2x2,步长为2,图像尺寸减半,池化后的尺寸变为112x112x64
3)经128个3x3的卷积核,两次卷积,ReLU激活,尺寸变为112x112x128 (128个卷积核,每个卷积核是64个卷积)
4)max pooling池化,尺寸变为56x56x128
5)经256个3x3的卷积核,三次卷积,ReLU激活,尺寸变为56x56x256
6)max pooling池化,尺寸变为28x28x256
7)经512个3x3的卷积核,三次卷积,ReLU激活,尺寸变为28x28x512
8)max pooling池化,尺寸变为14x14x512
9)经512个3x3的卷积核,三次卷积,ReLU,尺寸变为14x14x512
10)max pooling池化,尺寸变为7x7x512
11)然后Flatten(),将数据拉平成向量,变成一维51277=25088。
11)再经过两层1x1x4096,一层1x1x1000的全连接层(共三层),经ReLU激活
12)最后通过softmax输出1000个预测结果

权重参数

尽管VGG的结构简单,但是所包含的权重数目却很大,达到了惊人的139,357,544个参数。这些参数包括卷积核权重和全连接层权重。
例如,对于第一层卷积,由于输入图的通道数是3,网络必须学习大小为3x3,通道数为3的的卷积核,这样的卷积核有64个,因此总共有(3x3x3)x64 = 1728个参数
计算全连接层的权重参数数目的方法为:前一层节点数×本层的节点数前一层节点数×本层的节点数。因此,全连接层的参数分别为:
7x7x512x4096 = 1027,645,444
4096x4096 = 16,781,321
4096x1000 = 4096000

相关推荐
Blossom.1181 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn2 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer2 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic2 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿3 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天3 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU3 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec3 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子4 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study4 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉