数据库测试|Elasticsearch和ClickHouse的对决

前言

数据库作为产品架构的重要组成部分,一直是技术人员做产品选型的考虑因素之一。

ClkLog会经常遇到小伙伴问支持兼容哪几种数据库?为什么是选择ClickHouse而不是这个或那个。

由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。

比较Elasticsearch和ClickHouse,就像比较苹果和香蕉。两者都是很好的东西,有相似的功效,很多情况下都可以相互替代,同时各有特点,无法给出简单谁强谁弱的结论。

ClickHouse是为OLAP而生的,而Elasticsearch更早面世,也经常被用于生成统计报表。所以,我们将在这个交叉领域做实际测试,以便更好地做出决策。

先看测试结果

省流版测试比对结果,见下图。


如果你有兴趣了解详细的测试过程与结论,那就接着往下看吧。

概述

Web访问日志是最常见的日志之一,有基本统一的共识,比较适合作为测试数据。

测试将从 CPU、内存、存储、延迟等方面对比,服务器采用单节点部署形式,减少变量。

测试环境

  • 硬件配置(最低要求配置)

CPU:4 核心

内存:16GB

磁盘:100GB SSD

  • 数据集:模拟生成的Web访问日志,共计1千万条记录
  • 网络环境:局域网

采用Docker Compose创建服务器环境


使用以下Python脚本生成日志文件:


日志文件参考大小为2.8G。

数据导入速度

测试数据集将包含大量的Web访问日志,以模拟实际应用场景中的数据流入情况。我们将比较在相同硬件环境 下,Elasticsearch和ClickHouse在数据导入速度上的表现。

使用vector读取日志文件,解析并发送到Elasticsearch和ClickHouse,配置如下:


注意,测试时sinks部分应该只保留当前的测试对象,避免互相干扰。

Elasticsearch导入速度如下图所示:


导入1千万条访问日志,花费12分钟18秒,平均13550条每秒。

在导入过程中,Vector没有告警信息。已对导入结果检查,日志数量没有问题。

测试ClickHouse导入前,需要预先创建表:


ClickHouse导入速度如下图所示:


导入1千万条访问日志,花费8分10秒,平均20408条每秒。

在导入过程中,Vector有告警信息。已对导入结果检查,日志数量没有问题。

资源占用(CPU和内存)

资源占用是评价系统性能的重要指标。我们将监控在数据导入过程中,Elasticsearch和ClickHouse的CPU和

内存使用情况。

Elasticsearch在导入过程中,CPU占用约70%,内存占用8GB,导入结束后内存维持占用。

ClickHouse在导入过程中,CPU占用100%,导入过程中及导入结束后内存占用均维持在2GB左右。缓存占用, 导入前为3GB,导入过程中缓存占用逐步上升,导入结束时达到最大值12GB左右,之后逐步下降,最终恢复为3GB。

存储需求

存储需求直接影响系统的扩展性和成本。我们将比较 Elasticsearch和ClickHouse在存储相同数据集时的存储占用情况,以及两者在数据压缩和存储优化方面的表现。

导入1千万条Web访问日志后:

Elasticsearch数据占用存储空间约为3.1GB。在导入过程中占用存储空间逐渐稳定上升。

ClickHouse数据占用存储空间约为1.1GB。注意,在导入过程中占用存储空间一度观察到达到19GB左右(导入结束时),在之后花费约10分钟逐步收缩到最终大小。

查询延迟

查询延迟是用户体验的重要指标。我们将测试 Elasticsearch和ClickHouse在处理不同复杂度查询时的延迟表现,包括简单查询和复杂聚合查询。

  • 场景1

对这1千万条Web访问日志,按天统计,状态码大于等于400的次数前10名的路径。

Elasticsearch花费1700毫秒,使用以下查询:


ClickHouse花费500毫秒,使用以下SQL脚本:

  • 场景2

对这1千万条Web访问日志,查询耗时>=1秒的次数前10的路径,包含路径、总次数、最⼤耗时、平均耗时、超1秒的次数。

Elasticsearch花费7000毫秒,使用以下查询:


ClickHouse花费300毫秒,使用以下SQL脚本:

总结

通过以上几个方面的测试,我们将全面对比Elasticsearch和ClickHouse在Web访问日志统计分析应用中的表现。希望通过这次对比,能够为大家在选择合适的日志分析系统时提供有价值的参考。

总体而言,Elasticsearch开箱即用,特别是应对种类繁杂的日志时,非常灵活。甚至web访问日志这个单一领域,查询参数有很多变化,在写入时建模,省时省力。Elasticsearch使用一种名为 Query DSL(Domain Specific Language)的查询语言,与大多数工程师、数据分析师熟悉的技术栈差异比较大,设置了较高的学习和使用门槛,并需要学习大量的多新的概念和语法,即使学会之后还需要经常查阅手册才能写出正确的DSL语句。ClickHouse在写入、查询、存储、内存节省方面有明显优势,但需要实现定义表结构,应对字段经常变化的场景维护繁琐。ClickHouse的查询语言是基于SQL的,称为ClickHouse SQL,工程师和数据分析师对于 SQL非常熟悉,经验可以复用,不需要学习新的技术栈即可快速上手。

写在最后

从两方面因素考虑。其一,ClkLog作为用户行为分析系统,需要能够进行大规模的数据存储、繁琐的数据统计与聚合查询,对数据库的性能有比较高的要求。其二,ClkLog作为开源产品,更多的用户是具有开发能力的个人与公司,可以进行较为复杂的表结构维护。

综上,ClickHouse更符合ClkLog的产品需求与定位。

在数据库选型方面,4月我们完成了对火山引擎ByConity的兼容性测试,我们将持续进行对OLAP类型的数据库测试,类似Apache Doris、Apache Druid、Amazon Redshift等。如果你有想看的数据库测试,也可以私信我们(扫描下方二维码,添加好友)。

相关推荐
老华带你飞5 分钟前
二手商城|基于springboot 二手商城系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·spring
@小码农7 分钟前
6547网:2025年9月 Python等级考试(三级)真题及答案
服务器·数据库·python
老华带你飞21 分钟前
酒店预约|基于springboot 酒店预约系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·spring
会飞的土拨鼠呀38 分钟前
如何查询MySQL的CPU使用率突然变高
数据库·mysql
想用offer打牌1 小时前
一站式了解数据库三大范式(库表设计基础)
数据库·后端·面试
甘露s1 小时前
MySQL深入之索引、存储引擎和SQL优化
数据库·sql·mysql
偶遇急雨洗心尘1 小时前
记录一次服务器迁移时,数据库版本不一致导致sql函数报错和系统redirect重定向丢失域名问题
运维·服务器·数据库·sql
Arva .2 小时前
MySQL 的存储引擎
数据库·mysql
Logic1012 小时前
《Mysql数据库应用》 第2版 郭文明 实验5 存储过程与函数的构建与使用核心操作与思路解析
数据库·sql·mysql·学习笔记·计算机网络技术·形考作业·国家开放大学
小二·2 小时前
MyBatis基础入门《十六》企业级插件实战:基于 MyBatis Interceptor 实现 SQL 审计、慢查询监控与数据脱敏
数据库·sql·mybatis