一、字符设备驱动结构
1. cdev结构体
在Linux内核中,使用cdev
结构体来描述一个字符设备
c
struct cdev {
struct kobject kobj; //内嵌kobject对象
struct module *owner; //所属的模块
const struct file_operations *ops; //该设备的文件操作结构体
struct list_head list;
dev_t dev; //设备号
unsigned int count;
};
cdev相关的操作
cdev_init
: 初始化cdev的函数,实际上就是将cdev
和file_operation
进行关联
c
void cdev_init(struct cdev *cdev, struct file_operations *fops)
{
memset(cdev, 0, sizeof *cdev);
INIT_LIST_HEAD(&cdev->list);
kobject_init(&cdev->kobj, &ktype_cdev_default);
cdev->ops = fops; /* 将传入的文件操作结构体指针赋值给 cdev 的 ops*/
}
cdev_alloc
: 动态申请一个cdev
c
struct cdev *cdev_alloc(void)
{
struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL);
if (p) {
INIT_LIST_HEAD(&p->list);
kobject_init(&p->kobj, &ktype_cdev_dynamic);
}
return p;
}
cdev_add/cdev_del
: 向内核中添加/删除cdev,即对设备的注册和注销。通常发生在加载/卸载模块时
设备号
cdev结构体的dev_t定义了设备号,前12bit代表主设备号,后20bit代表次设备号。同一驱动可支持多个同类设备,因此同一类设备一般使用相同的主设备号,次设备号从0开始用来描述驱动的不同设备序号
c
MKDEV(int major, int minor) //组成一个设备号
MAJOR(dev_t dev) //获取主设备号
MINOR(dev_t dev) //获取次设备号
在调用cdev_add函数注册设备之前,需要先申请设备号
c
//已知设备号时使用,直接申请
int register_chrdev_region(dev_t from, unsigned count, const char *name);
//未知设备号时使用,向内核申请一个未被占用的设备号
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,
const char *name);
在调用cdev_del函数注销设备前,需要释放设备号
c
void unregister_chrdev_region(dev_t from, unsigned count);
2. file_operation结构体
应用程序调用的open/read/write
等函数,最终时调用的对应设备的file_operation
结构体中的对应函数,所以驱动程序设计的主题内容就是实现file_operation
结构体中的成员函数
c
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long,
unsigned long, unsigned long);
int (*check_flags)(int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **);
long (*fallocate)(struct file *file, int mode, loff_t offset,
loff_t len);
int (*show_fdinfo)(struct seq_file *m, struct file *f);
};
llseek()
: 修改一个文件的当前读写位置
read()/write()
: 向设备中读/写数据
unlocked_ioctl()
: 提供设备相关控制命令的实现
mmap()
: 将设备内存映射到进程的虚拟内存
open()/release()
: 打开/关闭设备。
3. 组成
加载/卸载函数
字符设备驱动模块加载函数中,需要实现设备号的申请和cdev的注册
c
static int __init xxx_init(void)
{
...
/* 初始化 cdev */
cdev_init(&xxx_dev.cdev, &xxx_fops);
xxx_dev.cdev.owner = THIS_MODULE;
/* 获取字符设备号 */
if (xxx_major) {
register_chrdev_region(xxx_dev_no, 1, DEV_NAME);
} else {
alloc_chrdev_region(&xxx_dev_no, 0, 1, DEV_NAME);
}
/* 注册设备 */
ret = cdev_add(&xxx_dev.cdev, xxx_dev_no, 1);
...
}
卸载时需要释放设备号和注销设备
c
static void _ _exit xxx_exit(void)
{
unregister_chrdev_region(xxx_dev_no, 1); /* 释放占用的设备号 */
cdev_del(&xxx_dev.cdev); /* 注销设备 */
...
}
file_operations结构体成员函数
大多数字符设备会实现read()、write()、ioctl()
函数。由于用户空间不能直接访问内核空间的内存,所以使用copy_from_user()
和copy_to_user()
进行交互
c
/* 读设备 */
ssize_t xxx_read(struct file *filp, char __user *buf, size_t count, loff_t*f_pos)
{
...
copy_to_user(buf, ..., ...);
...
}
/* 写设备 */
ssize_t xxx_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
{
...
copy_from_user(..., buf, ...);
...
}
/* ioctl 函数 */
long xxx_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
...
switch (cmd) {
case XXX_CMD1:
...
break;
case XXX_CMD2:
...
break;
default:
/* 不能支持的命令 */
return - ENOTTY;
}
return 0;
}
驱动程序结构
二、实例
实例是宋宝华的Linux设备驱动开发详解里的例子。实现了一个虚拟的globalmem设备的驱动程序,这个设备会分配一块内存空间,主要是实现对这块内存的相关驱动函数
代码实现
c
/*
* a simple char device driver: globalmem without mutex
*
* Copyright (C) 2014 Barry Song (baohua@kernel.org)
*
* Licensed under GPLv2 or later.
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#define GLOBALMEM_SIZE 0x1000 //要分配的内存空间大小
#define MEM_CLEAR 0x1 //清内存cmd
#define GLOBALMEM_MAJOR 230 //主设备号
static int globalmem_major = GLOBALMEM_MAJOR; //定义主设备号
module_param(globalmem_major, int, S_IRUGO); //可以接受传参来定义主设备号
//定义globalmem设备的类型
struct globalmem_dev {
struct cdev cdev; //所有字符设备都必须包含的结构体
unsigned char mem[GLOBALMEM_SIZE]; //不同设备可以自定义不同的变量
};
//定义一个globalmem设备
struct globalmem_dev *globalmem_devp;
//globalmem设备的open函数,filep代表打开动作的状态,inode代表文件本身的属性
static int globalmem_open(struct inode *inode, struct file *filp)
{
//将globalmem设备结构体传给对应的file,以便后续其他函数使用globalmem_devp结构体
filp->private_data = globalmem_devp;
return 0;
}
//当所有调用globalmem的进程都关闭时,才会调用release
static int globalmem_release(struct inode *inode, struct file *filp)
{
return 0;
}
//可以接收MEM_CLEAR 命令,里面实现相关对应命令的操作
static long globalmem_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct globalmem_dev *dev = filp->private_data; //通过传入的file来获取globalmem_dev
switch (cmd) {
case MEM_CLEAR:
memset(dev->mem, 0, GLOBALMEM_SIZE); //对应命令的操作
printk(KERN_INFO "globalmem is set to zero\n");
break;
default:
return -EINVAL;
}
return 0;
}
//当应用程序调用read函数时,最终会调用此函数
static ssize_t globalmem_read(struct file *filp, char __user * buf, size_t size, loff_t * ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
struct globalmem_dev *dev = filp->private_data; //通过传入的file来获取globalmem_dev
if (p >= GLOBALMEM_SIZE)
return 0;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p;
if (copy_to_user(buf, dev->mem + p, count)) { //将数据从内核空间copy到用户空间
ret = -EFAULT;
} else {
*ppos += count;
ret = count;
printk(KERN_INFO "read %u bytes(s) from %lu\n", count, p);
}
return ret;
}
//当应用程序调用write函数时,最终会调用此函数
static ssize_t globalmem_write(struct file *filp, const char __user * buf,
size_t size, loff_t * ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
struct globalmem_dev *dev = filp->private_data;
if (p >= GLOBALMEM_SIZE)
return 0;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p;
if (copy_from_user(dev->mem + p, buf, count))
ret = -EFAULT;
else {
*ppos += count;
ret = count;
printk(KERN_INFO "written %u bytes(s) from %lu\n", count, p);
}
return ret;
}
static loff_t globalmem_llseek(struct file *filp, loff_t offset, int orig)
{
loff_t ret = 0;
switch (orig) {
case 0:
if (offset < 0) {
ret = -EINVAL;
break;
}
if ((unsigned int)offset > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
filp->f_pos = (unsigned int)offset;
ret = filp->f_pos;
break;
case 1:
if ((filp->f_pos + offset) > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
if ((filp->f_pos + offset) < 0) {
ret = -EINVAL;
break;
}
filp->f_pos += offset;
ret = filp->f_pos;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
//定义file_operation结构体并填充成员函数
static const struct file_operations globalmem_fops = {
.owner = THIS_MODULE,
.llseek = globalmem_llseek,
.read = globalmem_read,
.write = globalmem_write,
.unlocked_ioctl = globalmem_ioctl,
.open = globalmem_open,
.release = globalmem_release,
};
//初始化并向内核注册globalmem_dev设备
static void globalmem_setup_cdev(struct globalmem_dev *dev, int index)
{
//创建一个设备号
int err, devno = MKDEV(globalmem_major, index);
//关联cdev和file_operations
cdev_init(&dev->cdev, &globalmem_fops);
dev->cdev.owner = THIS_MODULE;
//注册cdev到内核
err = cdev_add(&dev->cdev, devno, 1);
if (err)
printk(KERN_NOTICE "Error %d adding globalmem%d", err, index);
}
//模块初始化函数
static int __init globalmem_init(void)
{
int ret;
//创建一个次设备号为0的设备号
dev_t devno = MKDEV(globalmem_major, 0);
//向内核注册设备号
if (globalmem_major)
ret = register_chrdev_region(devno, 1, "globalmem");
else {
ret = alloc_chrdev_region(&devno, 0, 1, "globalmem");
globalmem_major = MAJOR(devno);
}
if (ret < 0)
return ret;
//申请一块globalmem_devp内存并清0
globalmem_devp = kzalloc(sizeof(struct globalmem_dev), GFP_KERNEL);
if (!globalmem_devp) {
ret = -ENOMEM;
goto fail_malloc;
}
//初始化并向内核注册globalmem_dev设备
globalmem_setup_cdev(globalmem_devp, 0);
return 0;
fail_malloc:
unregister_chrdev_region(devno, 1);
return ret;
}
//模块加载时会调用此函数
module_init(globalmem_init);
//模块卸载函数
static void __exit globalmem_exit(void)
{
cdev_del(&globalmem_devp->cdev); //从内核中注销设备
kfree(globalmem_devp); //释放申请的设备内存
unregister_chrdev_region(MKDEV(globalmem_major, 0), 1); //释放设备号
}
module_exit(globalmem_exit);
MODULE_AUTHOR("Barry Song <baohua@kernel.org>");
MODULE_LICENSE("GPL v2");
验证
shell
### 加载驱动 ###
sudo insmod globalmem.ko #加载驱动
lnsmod #查看是否已经被加载
cat /proc/devices #可以看到多出的主设备号为230名字为globalmem的字符设备驱动
mknod /dev/globalmem c 230 0 #创建/dev/globalmem设备节点
### 读写验证 ###
echo "hello world" > /dev/globalmem #将会调用write函数将hello wrold写进去
cat /dev/globalmem #将会调用read函数将字符串读出来