从全连接到卷积

一、全连接到卷积

1、卷积具有两个原则:

平移不变性:无论作用在哪个部分,它都要有相同的作用,而不会随着位置的改变而改变

局部性:卷积核作用处,作用域应该是核作用点的周围一小部分而不作用于更大的部分

2、卷积是一个特殊的全连接层。

(1)对输入输出:长度变化->高宽变化;

(2)对权重:之前输入输出都是一维,权重就是二维。现在输入输出都是二维,权重就是四维了;全连接层的权重矩阵的维度可以表示为 (n,m),其中 n 是输入神经元的数量,m 是输出神经元的数量。如果一个全连接层有 4 个输入维度和 3 个输出维度,那么它的权重矩阵的维度就是 4×3

(3)与全连接二维权重类似,只是从二维变成了四维

(4)把下标变一下,使得可以引出卷积

3、对应两个原则,处理上面的等式

(1)平移不变形

i,j变的时候,不能让w跟着变,即在别的维度都是一样的权重,否则失去平移不变性

平移不变性让我们对权重有一个限制,把ij的维度抹去,从四维变为二维

(2)局部性

4、权重是识别图片的识别器,

5、总结

(1)对全连接层使用平移不变性和局部性得到卷积层

(2)"卷积核在数值不变的情况下遍历整张图"、"卷积核不应该太大"

(3)这是卷积操作子的情况,后面会写卷积层的操作

二、卷积层

1、二维卷积层

(1)对输出Y:Kernel为2×2的矩阵,那么德尔塔就应该等于1

(2)卷积核与输入的位置无关,这叫做平移不变性;输出的一个窗口所用的只是一个2×2的矩阵,这说明了局部性

(3)w =其实就是kernel

(4)卷积核矩阵的大小,控制的是局部性;卷积为了保持局部性,不会随着输入维度的变大而使核变复杂

2、交叉相关与卷积

只是学出来的东西是反的,其他没有区别

3、一维与三维:一维交叉相关主要处理文本语言时序序列,而三维交叉相关会处理视频医学图像气象地图等。我们经常使用的二维交叉相关通常用于处理图像。

4、总结

三、代码

1、互相关运算

复制代码
import torch
from torch import nn
from d2l import torch as d2l

def corr2d(X, K):  #@save
    """计算二维互相关运算"""
    #卷积矩阵的长宽
    h, w = K.shape
    #输出矩阵
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            #卷积核大小的X与卷积核相乘求和得到输出
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

2、卷积层

复制代码
#跟上述的功能相同,只是创建的继承nn.Module的卷积类
class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        #生成kernel大小的权重矩阵
        self.weight = nn.Parameter(torch.rand(kernel_size))
        #偏置全部设为1
        self.bias = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

3、卷积核

复制代码
# 构造一个二维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)

# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2  # 学习率

for i in range(10):
    #使用卷积层对X进行前向传播,得到预测值Y_hat
    Y_hat = conv2d(X)
    #计算预测值和真实值之间的平方误差损失
    l = (Y_hat - Y) ** 2
    ## 将卷积层的梯度清零
    conv2d.zero_grad()
    #计算损失对卷积核的梯度
    l.sum().backward()
    # 迭代卷积核,使用梯度下降法
    conv2d.weight.data[:] -= lr * conv2d.weight.grad
    if (i + 1) % 2 == 0:
        print(f'epoch {i+1}, loss {l.sum():.3f}')
相关推荐
鹅是开哥几秒前
Spring AI Alibaba + DashScope 调用超时彻底解决(SocketTimeoutException / read timeout)
java·人工智能·spring
网易伏羲1 分钟前
以数据驱动工程机械智能化,网易灵动入选杭州国家语料库首批高质量数据集榜单
人工智能·具身智能·网易伏羲·网易灵动
够快云库2 分钟前
2026信创架构实战:制造业非结构化数据的深度治理之道
人工智能·架构·企业文件管理
lisw053 分钟前
机器人系统:化学研究的超空间引擎——从自动化到智能化的范式革命
大数据·人工智能·科技·机器学习·机器人
DR56474 分钟前
第 1 章 绪论
人工智能
学Linux的语莫6 分钟前
模型转为RKNN格式
python·深度学习·机器学习
卓豪终端管理7 分钟前
实力领跑!卓豪荣获 2026 高德纳双料认可
大数据·数据库·人工智能
文心快码BaiduComate9 分钟前
百度文心快码全面支持GLM-5
前端·人工智能
沉睡的无敌雄狮14 分钟前
可编程数字人落地实践:某省广电用矩阵跃动API重构工作流(选题→政策图谱→方言音色→审稿水印),附Python调度代码
人工智能·python·重构·排序算法·kmeans
Hcoco_me14 分钟前
目标追踪概述、分类
人工智能·深度学习·算法·机器学习·分类·数据挖掘·自动驾驶