从 Helm 到 Operator:Kubernetes应用管理的进化

🧰Helm 的作用

在开始前需要先对 kubernetes Operator 有个简单的认识。

以为我们在编写部署一些简单 Deployment 的时候只需要自己编写一个 yaml 文件然后 kubectl apply 即可。

yaml 复制代码
apiVersion: apps/v1  
kind: Deployment  
metadata:  
  labels:  
    app: k8s-combat  
  name: k8s-combat  
spec:  
  replicas: 1  
  selector:  
    matchLabels:  
      app: k8s-combat  
  template:  
    metadata:  
      labels:  
        app: k8s-combat  
    spec:  
      containers:  
        - name: k8s-combat  
          image: crossoverjie/k8s-combat:v1  
          imagePullPolicy: Always  
          resources:  
            limits:  
              cpu: "1"  
              memory: 300Mi  
            requests:  
              cpu: "0.1"  
              memory: 30Mi
bash 复制代码
kubectl apply -f deployment.yaml

这对于一些并不复杂的项目来说完全够用了,但组件一多就比较麻烦了。

这里以 Apache Pulsar 为例:它的核心组件有:

  • Broker
  • Proxy
  • Zookeeper
  • Bookkeeper
  • Prometheus(可选)
  • Grafana(可选)
    等组件,每个组件的启动还有这依赖关系。

必须需要等 Zookeeper 和 Bookkeeper 启动之后才能将流量放进来。

此时如何还继续使用 yaml 文件一个个部署就会非常繁琐,好在社区有提供 Helm 一键安装程序,使用它我们只需要在一个同意的 yaml 里简单的配置一些组件,配置就可以由 helm 来部署整个复杂的 Pulsar 系统。

yaml 复制代码
components:  
  # zookeeper  
  zookeeper: true  
  # bookkeeper  
  bookkeeper: true  
  # bookkeeper - autorecovery  
  autorecovery: true  
  # broker  
  broker: true  
  # functions  
  functions: false  
  # proxy  
  proxy: true  
  # toolset  
  toolset: true  
  # pulsar manager  
  pulsar_manager: false  
monitoring:  
  # monitoring - prometheus  
  prometheus: true  
  # monitoring - grafana  
  grafana: true  
  # monitoring - node_exporter  
  node_exporter: true  
  # alerting - alert-manager  
  alert_manager: false

比如在 helm 的 yaml 中我们可以选择使用哪些 components,以及是否启用监控组件。

最后直接使用这个文件进行安装:

bash 复制代码
helm install pulsar apache/pulsar \
	--values charts/pulsar/values.yaml \
	--set namespace=pulsar \
    --set initialize=true

它就会自动生成各个组件的 yaml 文件,然后统一执行。

所以 helm 的本质上和 kubectl apply yaml 一样的,只是我们在定义 value.yaml 时帮我们处理了许多不需要用户低频修改的参数。

我们可以使用 helm 将要执行的 yaml 输出后人工审核

bash 复制代码
helm install pulsar apache/pulsar --dry-run --debug > debug.yaml

🤔Operator 是什么

💔Helm 的痛点

Helm 虽然可以帮我们部署或者升级一个大型应用,但他却没法帮我们运维这个应用。

举个例子:比如我希望当 Pulsar Broker 的流量或者内存达到某个阈值后就指定扩容 Broker,闲时再自动回收。

或者某个 Bookkeeper 的磁盘使用率达到阈值后可以自动扩容磁盘,这些仅仅使用 Helm 时都是无法实现的。

以上这些需求我们目前也是通过监控系统发出报警,然后再由人工处理。

其中最大的痛点就是进行升级:

  • 升级ZK
  • 关闭auto recovery
  • 升级Bookkeeper
  • 升级Broker
  • 升级Proxy
  • 开启auto recovery

因为每次升级是有先后顺序的,需要依次观察每个组件运行是否正常才能往后操作。

如果有 Operator 理性情况下下我们只需要更新一下镜像版本,它就可以自动执行以上的所有步骤最后将集群升级完毕。

所以相对于 Helm 来说 Operator 是可以站在一个更高的视角俯视整个应用系统,它能发现系统哪个地方需要它从而直接修复。

💎CRD(Custom Resource Definitions)

而提到 Operator 那就不得不提到 CRD(Custom Resource Definitions)翻译过来就是自定义资源。

这是 kubernetes 提供的一个 API 扩展机制,类似于内置的 Deployment/StatefulSet/Services 资源,CRD 是一种自定义的资源。

这里以我们常用的 prometheus-operatorVictoriaMetrics-operator 为例:

Prometheus:

  • Prometheus:用于定义 Prometheus 的 Deployment
  • Alertmanager :用于定义 Alertmanager
  • ScrapeConfig:用于定会抓取规则
yaml 复制代码
apiVersion: monitoring.coreos.com/v1alpha1
kind: ScrapeConfig
metadata:
  name: static-config
  namespace: my-namespace
  labels:
    prometheus: system-monitoring-prometheus
spec:
  staticConfigs:
    - labels:
        job: prometheus
      targets:
        - prometheus.demo.do.prometheus.io:9090

使用时的一个很大区别就是资源的 kind: ScrapeConfig 为自定义的类型。

VictoriaMetrics 的 CRD:

  • VMPodScrape:Pod 的抓取规则
  • VMCluster:配置 VM 集群
  • VMAlert:配置 VM 的告警规则
  • 等等
yaml 复制代码
# vmcluster.yaml
apiVersion: operator.victoriametrics.com/v1beta1
kind: VMCluster
metadata:
  name: demo
spec:
  retentionPeriod: "1"
  replicationFactor: 2
  vmstorage:
    replicaCount: 2
    storageDataPath: "/vm-data"
    storage:
      volumeClaimTemplate:
        spec:
          resources:
            requests:
              storage: "10Gi"
    resources:
      limits:
        cpu: "1"
        memory: "1Gi"
  vmselect:
    replicaCount: 2
    cacheMountPath: "/select-cache"
    storage:
      volumeClaimTemplate:
        spec:
          resources:
            requests:
              storage: "1Gi"
    resources:
      limits:
        cpu: "1"
        memory: "1Gi"
      requests:
        cpu: "0.5"
        memory: "500Mi"
  vminsert:
    replicaCount: 2

以上是用于创建一个 VM 集群的 CRD 资源,应用之后就会自动创建一个集群。

Operator 原理

Operator 通常是运行在 kubernetes API server 的 webhook 之上,简单来说就是在一些内置资源的关键节点 API-server 会调用我们注册的一个 webhook,在这个 webhook 中我们根据我们的 CRD 做一些自定义的操作。

理论上我们可以使用任何语言都可以写 Operator,只需要能处理 api-server 的回调即可。

只是 Go 语言有很多成熟的工具,比如常用的 kubebuilderoperator-sdk.

他们内置了许多命令行工具,可以帮我们节省需要工作量。

这里以 operator-sdk 为例:

sh 复制代码
$ operator-sdk create webhook --group cache --version v1alpha1 --kind Memcached --defaulting --programmatic-validation

会直接帮我们创建好一个标准的 operator 项目:

sh 复制代码
├── Dockerfile
├── Makefile
├── PROJECT
├── api
│   └── v1alpha1
│       ├── memcached_webhook.go
│       ├── webhook_suite_test.go
├── config
│   ├── certmanager
│   │   ├── certificate.yaml
│   │   ├── kustomization.yaml
│   │   └── kustomizeconfig.yaml
│   ├── default
│   │   ├── manager_webhook_patch.yaml
│   │   └── webhookcainjection_patch.yaml
│   └── webhook
│       ├── kustomization.yaml
│       ├── kustomizeconfig.yaml
│       └── service.yaml
├── go.mod
├── go.sum
└── main.go

其中 Makefile 中包含了开发过程中常用的工具链(包括根据声明的结构体自动生成 CRD 资源、部署k8s 环境测试等等)、Dockerfile 等等。

这样我们就只需要专注于开发业务逻辑即可。

因为我前段时间给 https://github.com/open-telemetry/opentelemetry-operator 贡献过两个 feature,所以就以这个 Operator 为例:

它有一个 CRD: kind: Instrumentation,在这个 CRD 中可以将 OpenTelemetry 的 agent 注入到应用中。

yaml 复制代码
apiVersion: opentelemetry.io/v1alpha1  
kind: Instrumentation  
metadata:  
  name: instrumentation-test-order
  namespace: test  
spec:  
  env:  
    - name: OTEL_SERVICE_NAME  
      value: order
  selector:  
    matchLabels:  
      app: order  
  java:  
    image: autoinstrumentation-java:2.4.0-release  
    extensions:  
      - image: autoinstrumentation-java:2.4.0-release  
        dir: /extensions  
  
    env:  
      - name: OTEL_RESOURCE_ATTRIBUTES  
        value: service.name=order  
      - name: OTEL_INSTRUMENTATION_MESSAGING_EXPERIMENTAL_RECEIVE_TELEMETRY_ENABLED  
        value: "true"  
      - name: OTEL_TRACES_EXPORTER  
        value: otlp  
      - name: OTEL_METRICS_EXPORTER  
        value: otlp  
      - name: OTEL_LOGS_EXPORTER  
        value: none  
      - name: OTEL_EXPORTER_OTLP_ENDPOINT  
        value: http://open-telemetry-opentelemetry-collector.otel.svc.cluster.local:4317  
      - name: OTEL_EXPORTER_OTLP_COMPRESSION  
        value: gzip  
      - name: OTEL_EXPERIMENTAL_EXPORTER_OTLP_RETRY_ENABLED  
        value: "true"

它的运行规则是当我们的 Pod 在启动过程中会判断 Pod 的注解中是否开启了注入 OpenTelemetry 的配置。

如果开启则会将我们在 CRD 中自定义的镜像里的 javaagent 复制到业务容器中,同时会将下面的那些环境变量也一起加入的业务容器中。

要达到这样的效果就需要我们注册一个回调 endpoint。

go 复制代码
mgr.GetWebhookServer().Register("/mutate-v1-pod", &webhook.Admission{  
    Handler: podmutation.NewWebhookHandler(cfg, ctrl.Log.WithName("pod-webhook"), decoder, mgr.GetClient(),  
       []podmutation.PodMutator{  
          sidecar.NewMutator(logger, cfg, mgr.GetClient()),  
          instrumentation.NewMutator(logger, mgr.GetClient(), mgr.GetEventRecorderFor("opentelemetry-operator"), cfg),  
       }),})

当 Pod 创建或有新的变更请求时就会回调我们的接口。

go 复制代码
func (pm *instPodMutator) Mutate(ctx context.Context, ns corev1.Namespace, pod corev1.Pod) (corev1.Pod, error) {  
    logger := pm.Logger.WithValues("namespace", pod.Namespace, "name", pod.Name)
    }

在这个接口中我们就可以拿到 Pod 的信息,然后再获取 CRD Instrumentation 做我们的业务逻辑。

go 复制代码
var otelInsts v1alpha1.InstrumentationList  
if err := pm.Client.List(ctx, &otelInsts, client.InNamespace(ns.Name)); err != nil {  
    return nil, err  
}


// 从 CRD 中将数据复制到业务容器中。
pod.Spec.InitContainers = append(pod.Spec.InitContainers, corev1.Container{
	Name:      javaInitContainerName,
	Image:     javaSpec.Image,
	Command:   []string{"cp", "/javaagent.jar", javaInstrMountPath + "/javaagent.jar"},
	Resources: javaSpec.Resources,
	VolumeMounts: []corev1.VolumeMount{{
		Name:      javaVolumeName,
		MountPath: javaInstrMountPath,
	}},
})

for i, extension := range javaSpec.Extensions {
	pod.Spec.InitContainers = append(pod.Spec.InitContainers, corev1.Container{
		Name:      initContainerName + fmt.Sprintf("-extension-%d", i),
		Image:     extension.Image,
		Command:   []string{"cp", "-r", extension.Dir + "/.", javaInstrMountPath + "/extensions"},
		Resources: javaSpec.Resources,
		VolumeMounts: []corev1.VolumeMount{{
			Name:      javaVolumeName,
			MountPath: javaInstrMountPath,
		}},
	})
}

不过需要注意的是想要在测试环境中测试 operator 是需要安装一个 cert-manage,这样 webhook 才能正常的回调。

要使得 CRD 生效,我们还得先将 CRD 安装进 kubernetes 集群中,不过这些 operator-sdk 这类根据已经考虑周到了。

我们只需要定义好 CRD 的结构体:

然后使用 Makefile 中的工具 make bundle 就会自动将结构体转换为 CRD。

参考链接:

相关推荐
Johny_Zhao2 小时前
Docker + CentOS 部署 Zookeeper 集群 + Kubernetes Operator 自动化运维方案
linux·网络安全·docker·信息安全·zookeeper·kubernetes·云计算·系统运维
木鱼时刻1 天前
容器与 Kubernetes 基本概念与架构
容器·架构·kubernetes
chuanauc2 天前
Kubernets K8s 学习
java·学习·kubernetes
庸子2 天前
基于Jenkins和Kubernetes构建DevOps自动化运维管理平台
运维·kubernetes·jenkins
李白你好2 天前
高级运维!Kubernetes(K8S)常用命令的整理集合
运维·容器·kubernetes
Connie14512 天前
k8s多集群管理中的联邦和舰队如何理解?
云原生·容器·kubernetes
伤不起bb3 天前
Kubernetes 服务发布基础
云原生·容器·kubernetes
别骂我h3 天前
Kubernetes服务发布基础
云原生·容器·kubernetes
weixin_399380693 天前
k8s一键部署tongweb企业版7049m6(by why+lqw)
java·linux·运维·服务器·云原生·容器·kubernetes
斯普信专业组4 天前
K8s环境下基于Nginx WebDAV与TLS/SSL的文件上传下载部署指南
nginx·kubernetes·ssl