Python OpenCV与霍夫变换:检测符合特定斜率范围的直线

在计算机视觉和图像处理领域,检测图像中的直线是一项常见且重要的任务。OpenCV 提供了许多强大的工具来进行图像处理,其中霍夫变换(Hough Transform)就是用于检测直线的经典方法。本文将介绍如何使用 OpenCV 和霍夫变换来检测图像中符合特定斜率范围的直线,并展示一个完整的 Python 实现。

导入必要的库

首先,我们需要导入必要的 Python 库:

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

直线筛选函数

我们定义一个函数 filter_lines_by_slope_x_range_and_y 来筛选符合特定斜率范围、x 坐标范围及至少一端 y 坐标大于 min_y 的直线:

python 复制代码
def filter_lines_by_slope_x_range_and_y(lines, min_slope=1, max_slope=2, min_x=112, max_x=2400, min_y=310):
    """筛选符合斜率范围、x坐标范围及至少一端y坐标大于min_y的直线"""
    valid_lines = []
    for line in lines:
        x1, y1, x2, y2 = line[0]
        # 检查x坐标是否在指定范围内且至少一端的y坐标大于min_y
        if (min_x <= x1 <= max_x or min_x <= x2 <= max_x) and (y1 > min_y or y2 > min_y):
            # 避免除以零错误(垂直线)
            if x1 == x2:
                continue
            slope = (y2 - y1) / (x2 - x1)
            # 考虑斜率的正负,分别对应不同方向
            if (min_slope <= slope <= max_slope) or (-max_slope <= slope <= -min_slope):
                valid_lines.append(line)
    return valid_lines

读取和预处理图像

我们使用 OpenCV 读取图像,并将其转换为灰度图像,然后应用高斯模糊以减少噪声,最后使用 Canny 边缘检测算法检测图像中的边缘:

python 复制代码
# 读取图像
image = cv2.imread('rotated_image.jpg')  # 替换为你的图片路径
if image is None:
    print("Image not found.")
    exit()

# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊减少噪声
gray = cv2.GaussianBlur(gray, (5, 5), 0)

# Canny边缘检测
edges = cv2.Canny(gray, 100, 150, apertureSize=3)

检测和筛选直线

我们使用霍夫变换检测图像中的直线,并使用之前定义的函数筛选符合特定斜率范围的直线:

python 复制代码
# 使用霍夫变换检测直线,注意此函数返回的是直线段而非参数空间
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=400, minLineLength=100, maxLineGap=50)

# 筛选符合斜率范围的直线
valid_lines = filter_lines_by_slope_x_range_and_y(lines)

处理和保存检测到的直线信息

我们假设 valid_lines 只包含了一条满足条件的直线,并计算其斜率。如果检测到的直线为垂直线,则斜率为无穷大或用特殊标识表示:

python 复制代码
# 假设valid_lines只包含了一条满足条件的直线
if valid_lines:
    # 获取唯一满足条件的直线
    line = valid_lines[0]
    x1, y1, x2, y2 = line[0]

    # 计算斜率,注意处理除以零的情况
    if x1 != x2:
        slope = (y2 - y1) / (x2 - x1)
    else:
        slope = 'Vertical'  # 或者用其他方式表示垂直线

    # 打印或保存直线信息
    print(f"Detected Line: ({x1}, {y1}) to ({x2}, {y2}), Slope: {slope}")

    # 保存至文件(示例:文本文件)
    with open('line_info.txt', 'w') as file:
        file.write(f"Start Point: ({x1}, {y1})\nEnd Point: ({x2}, {y2})\nSlope: {slope}\n")
else:
    print("No valid line detected.")

绘制并显示检测到的直线

我们将筛选后的直线绘制在图像上,并使用 matplotlib 显示结果:

python 复制代码
# 绘制筛选后的直线
if valid_lines is not None:
    for line in valid_lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 红色绘制直线

# 显示结果
plt.figure(figsize=(10, 6))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Detected Lines with Slope between 1 to 2')
plt.show()

完整代码

以下是完整的代码:

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

def filter_lines_by_slope_x_range_and_y(lines, min_slope=1, max_slope=2, min_x=112, max_x=2400, min_y=310):
    """筛选符合斜率范围、x坐标范围及至少一端y坐标大于min_y的直线"""
    valid_lines = []
    for line in lines:
        x1, y1, x2, y2 = line[0]
        # 检查x坐标是否在指定范围内且至少一端的y坐标大于min_y
        if (min_x <= x1 <= max_x or min_x <= x2 <= max_x) and (y1 > min_y or y2 > min_y):
            # 避免除以零错误(垂直线)
            if x1 == x2:
                continue
            slope = (y2 - y1) / (x2 - x1)
            # 考虑斜率的正负,分别对应不同方向
            if (min_slope <= slope <= max_slope) or (-max_slope <= slope <= -min_slope):
                valid_lines.append(line)
    return valid_lines

# 读取图像
image = cv2.imread('rotated_image.jpg')  # 替换为你的图片路径
if image is None:
    print("Image not found.")
    exit()

# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊减少噪声
gray = cv2.GaussianBlur(gray, (5, 5), 0)

# Canny边缘检测
edges = cv2.Canny(gray, 100, 150, apertureSize=3)

# 使用霍夫变换检测直线,注意此函数返回的是直线段而非参数空间
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=400, minLineLength=100, maxLineGap=50)

# 筛选符合斜率范围的直线
valid_lines = filter_lines_by_slope_x_range_and_y(lines)

# 假设valid_lines只包含了一条满足条件的直线
if valid_lines:
    # 获取唯一满足条件的直线
    line = valid_lines[0]
    x1, y1, x2, y2 = line[0]

    # 计算斜率,注意处理除以零的情况
    if x1 != x2:
        slope = (y2 - y1) / (x2 - x1)
    else:
        slope = 'Vertical'  # 或者用其他方式表示垂直线

    # 打印或保存直线信息
    print(f"Detected Line: ({x1}, {y1}) to ({x2}, {y2}), Slope: {slope}")

    # 保存至文件(示例:文本文件)
    with open('line_info.txt', 'w') as file:
        file.write(f"Start Point: ({x1}, {y1})\nEnd Point: ({x2}, {y2})\nSlope: {slope}\n")
else:
    print("No valid line detected.")

# 绘制筛选后的直线
if valid_lines is not None:
    for line in valid_lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 红色绘制直线

# 显示结果
plt.figure(figsize=(10, 6))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Detected Lines with Slope between 1 to 2')
plt.show()

注意:由于传统视觉处理的限制,代码中的限制条件均需根据自己的图像实际需求进行限制,限制完成后任有多余线条,可调节霍夫变换函数的相关参数,基本能满足需求!!!

结语

本文介绍了如何使用 OpenCV 和霍夫变换检测图像中的直线,并筛选出符合特定斜率范围的直线。通过这种方法,我们可以更加精确地处理图像中的特定特征。如果你有任何问题或建议,欢迎在评论区留言讨论。

相关推荐
yyfhq27 分钟前
sdnet
python
测试199834 分钟前
2024软件测试面试热点问题
自动化测试·软件测试·python·测试工具·面试·职场和发展·压力测试
love_and_hope34 分钟前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
海阔天空_20131 小时前
Python pyautogui库:自动化操作的强大工具
运维·开发语言·python·青少年编程·自动化
零意@1 小时前
ubuntu切换不同版本的python
windows·python·ubuntu
思忖小下1 小时前
Python基础学习_01
python
q567315232 小时前
在 Bash 中获取 Python 模块变量列
开发语言·python·bash
是萝卜干呀2 小时前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据
代码欢乐豆2 小时前
数据采集之selenium模拟登录
python·selenium·测试工具
狂奔solar3 小时前
yelp数据集上识别潜在的热门商家
开发语言·python