Python OpenCV与霍夫变换:检测符合特定斜率范围的直线

在计算机视觉和图像处理领域,检测图像中的直线是一项常见且重要的任务。OpenCV 提供了许多强大的工具来进行图像处理,其中霍夫变换(Hough Transform)就是用于检测直线的经典方法。本文将介绍如何使用 OpenCV 和霍夫变换来检测图像中符合特定斜率范围的直线,并展示一个完整的 Python 实现。

导入必要的库

首先,我们需要导入必要的 Python 库:

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

直线筛选函数

我们定义一个函数 filter_lines_by_slope_x_range_and_y 来筛选符合特定斜率范围、x 坐标范围及至少一端 y 坐标大于 min_y 的直线:

python 复制代码
def filter_lines_by_slope_x_range_and_y(lines, min_slope=1, max_slope=2, min_x=112, max_x=2400, min_y=310):
    """筛选符合斜率范围、x坐标范围及至少一端y坐标大于min_y的直线"""
    valid_lines = []
    for line in lines:
        x1, y1, x2, y2 = line[0]
        # 检查x坐标是否在指定范围内且至少一端的y坐标大于min_y
        if (min_x <= x1 <= max_x or min_x <= x2 <= max_x) and (y1 > min_y or y2 > min_y):
            # 避免除以零错误(垂直线)
            if x1 == x2:
                continue
            slope = (y2 - y1) / (x2 - x1)
            # 考虑斜率的正负,分别对应不同方向
            if (min_slope <= slope <= max_slope) or (-max_slope <= slope <= -min_slope):
                valid_lines.append(line)
    return valid_lines

读取和预处理图像

我们使用 OpenCV 读取图像,并将其转换为灰度图像,然后应用高斯模糊以减少噪声,最后使用 Canny 边缘检测算法检测图像中的边缘:

python 复制代码
# 读取图像
image = cv2.imread('rotated_image.jpg')  # 替换为你的图片路径
if image is None:
    print("Image not found.")
    exit()

# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊减少噪声
gray = cv2.GaussianBlur(gray, (5, 5), 0)

# Canny边缘检测
edges = cv2.Canny(gray, 100, 150, apertureSize=3)

检测和筛选直线

我们使用霍夫变换检测图像中的直线,并使用之前定义的函数筛选符合特定斜率范围的直线:

python 复制代码
# 使用霍夫变换检测直线,注意此函数返回的是直线段而非参数空间
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=400, minLineLength=100, maxLineGap=50)

# 筛选符合斜率范围的直线
valid_lines = filter_lines_by_slope_x_range_and_y(lines)

处理和保存检测到的直线信息

我们假设 valid_lines 只包含了一条满足条件的直线,并计算其斜率。如果检测到的直线为垂直线,则斜率为无穷大或用特殊标识表示:

python 复制代码
# 假设valid_lines只包含了一条满足条件的直线
if valid_lines:
    # 获取唯一满足条件的直线
    line = valid_lines[0]
    x1, y1, x2, y2 = line[0]

    # 计算斜率,注意处理除以零的情况
    if x1 != x2:
        slope = (y2 - y1) / (x2 - x1)
    else:
        slope = 'Vertical'  # 或者用其他方式表示垂直线

    # 打印或保存直线信息
    print(f"Detected Line: ({x1}, {y1}) to ({x2}, {y2}), Slope: {slope}")

    # 保存至文件(示例:文本文件)
    with open('line_info.txt', 'w') as file:
        file.write(f"Start Point: ({x1}, {y1})\nEnd Point: ({x2}, {y2})\nSlope: {slope}\n")
else:
    print("No valid line detected.")

绘制并显示检测到的直线

我们将筛选后的直线绘制在图像上,并使用 matplotlib 显示结果:

python 复制代码
# 绘制筛选后的直线
if valid_lines is not None:
    for line in valid_lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 红色绘制直线

# 显示结果
plt.figure(figsize=(10, 6))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Detected Lines with Slope between 1 to 2')
plt.show()

完整代码

以下是完整的代码:

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

def filter_lines_by_slope_x_range_and_y(lines, min_slope=1, max_slope=2, min_x=112, max_x=2400, min_y=310):
    """筛选符合斜率范围、x坐标范围及至少一端y坐标大于min_y的直线"""
    valid_lines = []
    for line in lines:
        x1, y1, x2, y2 = line[0]
        # 检查x坐标是否在指定范围内且至少一端的y坐标大于min_y
        if (min_x <= x1 <= max_x or min_x <= x2 <= max_x) and (y1 > min_y or y2 > min_y):
            # 避免除以零错误(垂直线)
            if x1 == x2:
                continue
            slope = (y2 - y1) / (x2 - x1)
            # 考虑斜率的正负,分别对应不同方向
            if (min_slope <= slope <= max_slope) or (-max_slope <= slope <= -min_slope):
                valid_lines.append(line)
    return valid_lines

# 读取图像
image = cv2.imread('rotated_image.jpg')  # 替换为你的图片路径
if image is None:
    print("Image not found.")
    exit()

# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊减少噪声
gray = cv2.GaussianBlur(gray, (5, 5), 0)

# Canny边缘检测
edges = cv2.Canny(gray, 100, 150, apertureSize=3)

# 使用霍夫变换检测直线,注意此函数返回的是直线段而非参数空间
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=400, minLineLength=100, maxLineGap=50)

# 筛选符合斜率范围的直线
valid_lines = filter_lines_by_slope_x_range_and_y(lines)

# 假设valid_lines只包含了一条满足条件的直线
if valid_lines:
    # 获取唯一满足条件的直线
    line = valid_lines[0]
    x1, y1, x2, y2 = line[0]

    # 计算斜率,注意处理除以零的情况
    if x1 != x2:
        slope = (y2 - y1) / (x2 - x1)
    else:
        slope = 'Vertical'  # 或者用其他方式表示垂直线

    # 打印或保存直线信息
    print(f"Detected Line: ({x1}, {y1}) to ({x2}, {y2}), Slope: {slope}")

    # 保存至文件(示例:文本文件)
    with open('line_info.txt', 'w') as file:
        file.write(f"Start Point: ({x1}, {y1})\nEnd Point: ({x2}, {y2})\nSlope: {slope}\n")
else:
    print("No valid line detected.")

# 绘制筛选后的直线
if valid_lines is not None:
    for line in valid_lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 红色绘制直线

# 显示结果
plt.figure(figsize=(10, 6))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Detected Lines with Slope between 1 to 2')
plt.show()

注意:由于传统视觉处理的限制,代码中的限制条件均需根据自己的图像实际需求进行限制,限制完成后任有多余线条,可调节霍夫变换函数的相关参数,基本能满足需求!!!

结语

本文介绍了如何使用 OpenCV 和霍夫变换检测图像中的直线,并筛选出符合特定斜率范围的直线。通过这种方法,我们可以更加精确地处理图像中的特定特征。如果你有任何问题或建议,欢迎在评论区留言讨论。

相关推荐
啊阿狸不会拉杆3 小时前
《机器学习导论》第 10 章-线性判别式
人工智能·python·算法·机器学习·numpy·lda·线性判别式
超龄超能程序猿3 小时前
Python 反射入门实践
开发语言·python
玄同7653 小时前
Python Random 模块深度解析:从基础 API 到 AI / 大模型工程化实践
人工智能·笔记·python·学习·算法·语言模型·llm
AIFarmer4 小时前
在EV3上运行Python语言——环境设置
python·ev3
yunsr4 小时前
python作业3
开发语言·python
历程里程碑4 小时前
普通数组-----除了自身以外数组的乘积
大数据·javascript·python·算法·elasticsearch·搜索引擎·flask
曦月逸霜4 小时前
Python快速入门——学习笔记(持续更新中~)
笔记·python·学习
喵手4 小时前
Python爬虫实战:采集菜谱网站的“分类/列表页”(例如“家常菜”或“烘焙”频道)数据,构建高可用的美食菜谱数据采集流水线(附CSV导出)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集菜谱网站数据·家常菜或烘焙频道·构建高可用食谱数据采集系统
喵手4 小时前
Python爬虫实战:硬核解析 Google Chrome 官方更新日志(正则+文本清洗篇)(附 CSV 导出)!
爬虫·python·爬虫实战·零基础python爬虫教学·csv导出·监控谷歌版本发布历史·获取稳定版更新日志
小邓睡不饱耶4 小时前
实战|W餐饮平台智能化菜品推荐方案(含Spark实操+算法选型+完整流程)
python·ai·ai编程·ai写作