深度学习1

1.支持向量机Support Vector Machine(SVM)是一种对数据二分类的线性分类器,目的是寻找一个超平面对样本进行分割,广泛应用人像识别,手写数字识别,生物信息识别。

二维空间分割界是一条直线,在三维空间是一个平面,在本文中为了方便起见,把二维空间也称为超平面。

2.SVM求解是一个含有不等式约束的凸二次规划问题,可用拉格朗日乘子法得到其对偶问题

3.核函数

SVM求解时样本是线性可分的,然而在实际的任务中,样本往往线性不可分,无法找到一个超平面将样本分开,但可以用一条曲线分开,如图所示。

解决办法是将原始样本点映射到一个高维空间,样本在原始空间线性不可分,但在高维空间有可能是线性可分的 。如果在高维空间维度很高,直接计算会相当困难,因此可以不直接计算,而是用核函数代替。其定义为样本x映射到高维空间之后的内积等于他们在原空间通过函数K计算之后的结果。

4.软间核

软间核可以让某些样本分类数据分类错误(当然越少越好),如果所有条件都不满足约束条件就称为硬件核。

总结:

相关推荐
GIOTTO情9 分钟前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
阿里云大数据AI技术18 分钟前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码25 分钟前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀31 分钟前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
机器之心1 小时前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心1 小时前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩1 小时前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan1 小时前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意1 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰1 小时前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码