批量爬取B站网络视频信息

使用XPath爬取B站视频链接等相关信息

对于B站,目前网上的爬虫大多都是使用通过解析服务器的响应来爬取想要的内容,下面我们通过使用XPath来爬取B站上一些想要的信息

此次任务我们需要对B站搜索到的关键字,并爬取搜索的视频时间、播放量、弹幕量等信息

分析B站html框架

打开B站后,搜索关键字并按下F12进入开发者模式,就能看到页面的html代码,需要在这些代码中找到需要爬取的信息。

点击右上角的箭头图片,再点击想要爬取内容的信息,就会自动跳转到对应的html代码上。

获取内容

找到想要爬取的信息就得获取信息的XPath表达式,这儿可以通过如下图方法快速得到表达式。

这样就可以得到该位置的XPath表达式了。

由于第一页XPath表达式与后面页的XPath表达式有些许的不同,需要通过对链接的验证来使用不同的表达式

完整代码

python 复制代码
import requests
from lxml import etree
import time
import random
import csv
import pandas as pd

headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'}

result = pd.DataFrame()

urls = [
    'https://search.bilibili.com/all?vt=69174939&keyword=%E5%A4%A7%E6%95%B0%E6%8D%AE&from_source=webtop_search&spm_id_from=333.1007&search_source=2',
    'https://search.bilibili.com/all?keyword=%E7%89%A9%E8%81%94%E7%BD%91%E5%B7%A5%E7%A8%8B&from_source=webtop_search&spm_id_from=333.1007&search_source=2',
    'https://search.bilibili.com/all?vt=69174939&keyword=%E7%94%B5%E5%AD%90%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF&from_source=webtop_search&spm_id_from=333.1007&search_source=2',
    'https://search.bilibili.com/all?vt=69174939&keyword=%E8%99%9A%E6%8B%9F%E7%8E%B0%E5%AE%9E&from_source=webtop_search&spm_id_from=333.1007&search_source=2',
    'https://search.bilibili.com/all?vt=691740939&keyword=%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD&from_source=webtop_search&spm_id_from=333.1007&search_source=2',
]

url_key = [len(i) + 6 for i in urls]
for index, url in enumerate(urls):
    for page in range(1, 10):
        

        html = requests.get(url, headers=headers)
        print(url)
        bs = etree.HTML(html.text)
        if url[-8:-1] == 'source=':
            items = bs.xpath('//*[@id="i_cecream"]/div/div[2]/div[2]/div/div/div/div[3]/div')
        else:
            items = bs.xpath('//*[@id="i_cecream"]/div/div[2]/div[2]/div/div/div[1]')

        for i in range(1, 43):
            try:
                time = items[0].xpath(f'div[{i}]/div/div[2]/div/div/p/a/span[2]')[0].text
            except:
                time = None
            try:
                up_author = items[0].xpath(f'div[{i}]/div/div[2]/div/div/p/a/span[1]')[0].text
            except:
                up_author = None
            try:
                title = items[0].xpath(f'div[{i}]/div/div[2]/div/div/a/h3/@title')[0]
            except:
                title = None
            try:
                href = items[0].xpath(f'div[{i}]/div/div[2]/div/div/a/@href')[0]
            except:
                href = None
            try:
                Playback_volume = items[0].xpath(f'div[{i}]/div/div[2]/a/div/div[2]/div/div/span[1]/span')[0].text
            except:
                Playback_volume = None
            try:
                Barrage_volume = items[0].xpath(f'div[{i}]/div/div[2]/a/div/div[2]/div/div/span[2]/span')[0].text
            except:
                Barrage_volume = None
            try:
                Video_duration = items[0].xpath(f'div[{i}]/div/div[2]/a/div/div[2]/div/span')[0].text
            except:
                Video_duration = None
            print(time, title, up_author, href, Playback_volume, Barrage_volume, Video_duration)
            df = pd.DataFrame({'time': [time], 'title': [title], 'up_author': [up_author], 'href': [href],
                               'Playback_volume': [Playback_volume], 'Barrage_volume': [Barrage_volume],
                               'Video_duration': [Video_duration]})
            result = pd.concat([result, df])
        if url[-8:-1] == 'source=':
            url = url + '&page=2&o=36'
        else:
            new_page = int(url[url_key[index]]) + 1
            url = url[:url_key[index]] + f'{new_page}&o={(new_page - 1) * 36}'
result.to_excel("F:/B站数据.xlsx", index=False)
相关推荐
Lucky高29 分钟前
Pandas库入门
python·pandas
小鸡吃米…40 分钟前
Python PyQt6教程三-菜单与工具栏
开发语言·python
Jack电子实验室1 小时前
【杭电HDU】校园网(DeepL/Srun)自动登录教程
python·嵌入式硬件·计算机网络·自动化
木头左1 小时前
二值化近似计算在量化交易策略中降低遗忘门运算复杂度
python
Jelena157795857921 小时前
Java爬虫淘宝拍立淘item_search_img拍接口示例代码
开发语言·python
郝学胜-神的一滴2 小时前
Python数据模型:深入解析及其对Python生态的影响
开发语言·网络·python·程序人生·性能优化
free-elcmacom2 小时前
机器学习进阶<8>PCA主成分分析
人工智能·python·机器学习·pca
liu****2 小时前
Python 基础语法(二):程序流程控制
开发语言·python·python基础
大连好光景3 小时前
Python打日志
运维·python·运维开发
syt_biancheng3 小时前
博客系统全流程测试总结
python·selenium·测试用例·压力测试·postman