循环神经网络(RNN)

作用:

RNN可以有效地处理和利用序列数据中的时间信息和上下文信息。

原理:

想象你在阅读一本小说,每读到一个词,你的理解会受前面词的影响。RNN的工作方式类似:它会记住前面看到的内容,并根据这个记忆来理解当前的输入。

实现步骤:

输入表示: 首先,将输入数据(比如一段文字)转换成向量表示,通常用词向量或者其他表示方法来做。

循环结构: RNN的核心是循环结构。每个时间步,它接收当前的输入向量和上一个时间步的隐藏状态(即记忆),并输出一个新的隐藏状态。

隐藏状态更新: 隐藏状态包含了网络对之前信息的总结和记忆,是RNN记忆力的体现。它通过一个激活函数(比如tanh)来更新。

输出预测: 在每个时间步,RNN可以产生一个输出,也可以在序列结束后输出一个结果。这取决于任务类型,比如语言模型可以在每个时间步预测下一个词,而情感分析可以在最后输出整段文本的情感。

训练优化: 通过反向传播算法来优化网络参数,使得网络能够更好地预测下一个词或执行其他任务。

总之,RNN通过其循环结构可以利用先前的信息来影响当前输出,因此非常适合那些依赖于序列顺序和历史信息的问题。

我们每次训练后都会生成对应的记忆。当我们需要data1训练的结果要结合data0的的时候,我们就可以将data0训练的得到的记忆加入data1训练后得到的记忆,然后输入得到Result1。这样得到的Result1就包含了先前的记忆内容。

相关推荐
极客BIM工作室12 小时前
机器学习之规则学习(Rule Learning)
人工智能·机器学习
mwq3012312 小时前
GPT vs BERT:一个是预言家,一个是侦探|深入理解语言模型的两大范式
人工智能
mwq3012312 小时前
AI模型的“返璞归真”:为何设计越来越简单,性能却持续爆发?
人工智能
2501_9307992413 小时前
访答知识库#Pdf转word#人工智能#Al编辑器#访答PAG#企业知识库人,个人知识库,访答编辑器,访答浏览器,本地知识库,企业知识库……
人工智能
聚客AI13 小时前
🌟RAG多轮对话场景攻坚:如何实现低延迟高准确率的语义理解?
人工智能·llm·掘金·日新计划
mmq在路上13 小时前
SLAM-Former: Putting SLAM into One Transformer论文阅读
论文阅读·深度学习·transformer
一起喝芬达201013 小时前
当数据仓库遇见AI:金融风控的「认知大脑」正在觉醒
数据仓库·人工智能
肥晨13 小时前
Rokid JSAR 技术开发全指南:基于 Web 技术栈的 AR 开发实战
人工智能
工藤学编程13 小时前
零基础学AI大模型之LangChain链
人工智能·langchain
美团技术团队14 小时前
可验证过程奖励在提升大模型推理效率中的探索与实践
人工智能·算法