Transform Spark

rm -r dp-203 -f

git clone https://github.com/MicrosoftLearning/dp-203-azure-data-engineer dp-203

cd dp-203/Allfiles/labs/06

./setup.ps1

https://github.com/MicrosoftLearning/dp-203-azure-data-engineer/tree/master/Allfiles/labs/06/notebooks

python 复制代码
order_details = spark.read.csv('/data/*.csv', header=True, inferSchema=True)
display(order_details.limit(5))
python 复制代码
from pyspark.sql.functions import split, col

# Create the new FirstName and LastName fields
transformed_df = order_details.withColumn("FirstName", split(col("CustomerName"), " ").getItem(0)).withColumn("LastName", split(col("CustomerName"), " ").getItem(1))

# Remove the CustomerName field
transformed_df = transformed_df.drop("CustomerName")

display(transformed_df.limit(5))
python 复制代码
transformed_df.write.mode("overwrite").parquet('/transformed_data/orders.parquet')
print ("Transformed data saved!")
python 复制代码
from pyspark.sql.functions import year, month, col

dated_df = transformed_df.withColumn("Year", year(col("OrderDate"))).withColumn("Month", month(col("OrderDate")))
display(dated_df.limit(5))
dated_df.write.partitionBy("Year","Month").mode("overwrite").parquet("/partitioned_data")
print ("Transformed data saved!")
python 复制代码
orders_2020 = spark.read.parquet('/partitioned_data/Year=2020/Month=*')
display(orders_2020.limit(5))
python 复制代码
order_details.write.saveAsTable('sales_orders', format='parquet', mode='overwrite', path='/sales_orders_table')
python 复制代码
sql_transform = spark.sql("SELECT *, YEAR(OrderDate) AS Year, MONTH(OrderDate) AS Month FROM sales_orders")
display(sql_transform.limit(5))
sql_transform.write.partitionBy("Year","Month").saveAsTable('transformed_orders', format='parquet', mode='overwrite', path='/transformed_orders_table')
sql 复制代码
%%sql

SELECT * FROM transformed_orders
WHERE Year = 2021
    AND Month = 1
sql 复制代码
%%sql

DROP TABLE transformed_orders;
DROP TABLE sales_orders;
相关推荐
TG:@yunlaoda360 云老大1 小时前
谷歌云Flink 核心组成及生态发展:实时数据处理的下一代引擎
大数据·flink·googlecloud
JavaBoy_XJ1 小时前
电商系统中ES检索技术设计和运用
大数据·elasticsearch·搜索引擎
q***21386 小时前
分布式多卡训练(DDP)踩坑
分布式
nini_boom8 小时前
**论文初稿撰写工具2025推荐,高效写作与智能辅助全解析*
大数据·python·信息可视化
小园子的小菜9 小时前
Elasticsearch高阶用法实战:从数据建模到集群管控的极致优化
大数据·elasticsearch·搜索引擎
源码之家11 小时前
机器学习:基于大数据二手房房价预测与分析系统 可视化 线性回归预测算法 Django框架 链家网站 二手房 计算机毕业设计✅
大数据·算法·机器学习·数据分析·spark·线性回归·推荐算法
布吉岛没有岛_12 小时前
Hadoop学习_week1
大数据·hadoop
槁***耿12 小时前
后端分布式事务解决方案,Seata与Hmily对比
分布式
1***y17812 小时前
PySpark RDD编程实战,分布式数据处理
分布式
阿里云大数据AI技术14 小时前
云栖实录 | 洋钱罐基于 EMR Serverless 产品构建全球一体化数字金融平台
大数据·运维