Transform Spark

rm -r dp-203 -f

git clone https://github.com/MicrosoftLearning/dp-203-azure-data-engineer dp-203

cd dp-203/Allfiles/labs/06

./setup.ps1

https://github.com/MicrosoftLearning/dp-203-azure-data-engineer/tree/master/Allfiles/labs/06/notebooks

python 复制代码
order_details = spark.read.csv('/data/*.csv', header=True, inferSchema=True)
display(order_details.limit(5))
python 复制代码
from pyspark.sql.functions import split, col

# Create the new FirstName and LastName fields
transformed_df = order_details.withColumn("FirstName", split(col("CustomerName"), " ").getItem(0)).withColumn("LastName", split(col("CustomerName"), " ").getItem(1))

# Remove the CustomerName field
transformed_df = transformed_df.drop("CustomerName")

display(transformed_df.limit(5))
python 复制代码
transformed_df.write.mode("overwrite").parquet('/transformed_data/orders.parquet')
print ("Transformed data saved!")
python 复制代码
from pyspark.sql.functions import year, month, col

dated_df = transformed_df.withColumn("Year", year(col("OrderDate"))).withColumn("Month", month(col("OrderDate")))
display(dated_df.limit(5))
dated_df.write.partitionBy("Year","Month").mode("overwrite").parquet("/partitioned_data")
print ("Transformed data saved!")
python 复制代码
orders_2020 = spark.read.parquet('/partitioned_data/Year=2020/Month=*')
display(orders_2020.limit(5))
python 复制代码
order_details.write.saveAsTable('sales_orders', format='parquet', mode='overwrite', path='/sales_orders_table')
python 复制代码
sql_transform = spark.sql("SELECT *, YEAR(OrderDate) AS Year, MONTH(OrderDate) AS Month FROM sales_orders")
display(sql_transform.limit(5))
sql_transform.write.partitionBy("Year","Month").saveAsTable('transformed_orders', format='parquet', mode='overwrite', path='/transformed_orders_table')
sql 复制代码
%%sql

SELECT * FROM transformed_orders
WHERE Year = 2021
    AND Month = 1
sql 复制代码
%%sql

DROP TABLE transformed_orders;
DROP TABLE sales_orders;
相关推荐
群联云防护小杜2 小时前
云服务器主动防御策略与自动化防护(下)
运维·服务器·分布式·安全·自动化·音视频
weixin_549808362 小时前
以运营为核心的智能劳动力管理系统,破解连锁零售、制造业排班难题
大数据·人工智能·零售
TE-茶叶蛋3 小时前
秒杀压测计划 + Kafka 分区设计参考
分布式·kafka
SunTecTec4 小时前
Flink Docker Application Mode 命令解析 - 修改命令以启用 Web UI
大数据·前端·docker·flink
喜欢猪猪4 小时前
系统架构师---基于规则的系统架构
大数据·elasticsearch·搜索引擎
2401_871290585 小时前
如何在idea中写spark程序
大数据·spark·intellij-idea
只因只因爆5 小时前
如何在idea中写spark程序
java·spark·intellij-idea
三块钱07945 小时前
【原创】从s3桶将对象导入ES建立索引,以便快速查找文件
大数据·elasticsearch·搜索引擎·s3
青铜爱码士6 小时前
redis+lua+固定窗口实现分布式限流
redis·分布式·lua
!chen7 小时前
Hadoop和Spark大数据挖掘与实战
hadoop·数据挖掘·spark