Transform Spark

rm -r dp-203 -f

git clone https://github.com/MicrosoftLearning/dp-203-azure-data-engineer dp-203

cd dp-203/Allfiles/labs/06

./setup.ps1

https://github.com/MicrosoftLearning/dp-203-azure-data-engineer/tree/master/Allfiles/labs/06/notebooks

python 复制代码
order_details = spark.read.csv('/data/*.csv', header=True, inferSchema=True)
display(order_details.limit(5))
python 复制代码
from pyspark.sql.functions import split, col

# Create the new FirstName and LastName fields
transformed_df = order_details.withColumn("FirstName", split(col("CustomerName"), " ").getItem(0)).withColumn("LastName", split(col("CustomerName"), " ").getItem(1))

# Remove the CustomerName field
transformed_df = transformed_df.drop("CustomerName")

display(transformed_df.limit(5))
python 复制代码
transformed_df.write.mode("overwrite").parquet('/transformed_data/orders.parquet')
print ("Transformed data saved!")
python 复制代码
from pyspark.sql.functions import year, month, col

dated_df = transformed_df.withColumn("Year", year(col("OrderDate"))).withColumn("Month", month(col("OrderDate")))
display(dated_df.limit(5))
dated_df.write.partitionBy("Year","Month").mode("overwrite").parquet("/partitioned_data")
print ("Transformed data saved!")
python 复制代码
orders_2020 = spark.read.parquet('/partitioned_data/Year=2020/Month=*')
display(orders_2020.limit(5))
python 复制代码
order_details.write.saveAsTable('sales_orders', format='parquet', mode='overwrite', path='/sales_orders_table')
python 复制代码
sql_transform = spark.sql("SELECT *, YEAR(OrderDate) AS Year, MONTH(OrderDate) AS Month FROM sales_orders")
display(sql_transform.limit(5))
sql_transform.write.partitionBy("Year","Month").saveAsTable('transformed_orders', format='parquet', mode='overwrite', path='/transformed_orders_table')
sql 复制代码
%%sql

SELECT * FROM transformed_orders
WHERE Year = 2021
    AND Month = 1
sql 复制代码
%%sql

DROP TABLE transformed_orders;
DROP TABLE sales_orders;
相关推荐
Theodore_10222 小时前
大数据(1) 大数据概述
大数据·hadoop·数据分析·spark·hbase
Aurora_NeAr2 小时前
Apache Spark详解
大数据·后端·spark
IvanCodes4 小时前
六、Sqoop 导出
大数据·hadoop·sqoop
G探险者4 小时前
《深入理解 Nacos 集群与 Raft 协议》系列五:为什么集群未过半,系统就不可用?从 Raft 的投票机制说起
分布式·后端
G探险者4 小时前
《深入理解 Nacos 集群与 Raft 协议》系列一:为什么 Nacos 集群必须过半节点存活?从 Raft 协议说起
分布式·后端
G探险者4 小时前
《深入理解 Nacos 集群与 Raft 协议》系列四:日志复制机制:Raft 如何确保提交可靠且幂等
分布式·后端
G探险者4 小时前
《深入理解 Nacos 集群与 Raft 协议》系列三:日志对比机制:Raft 如何防止数据丢失与错误选主
分布式·后端
G探险者4 小时前
《深入理解 Nacos 集群与 Raft 协议》系列二:Raft 为什么要“选主”?选主的触发条件与机制详解
分布式·后端
代码匠心4 小时前
从零开始学Flink:揭开实时计算的神秘面纱
java·大数据·后端·flink