神经网络设计过程

1.可根据Iris特征直接判断

2.神经网络方法,采集大量的Iris特征,分类对应标签,构成数据集。

将数据集喂入搭好的神经网络结构,网络通过反向传播优化参数得到模型。

有新的网络送入到模型里,模型会给出识别结果。

3.具体实现过程。

Iris有4个特征,分类总共三种,构成的神经网络如下所示

MP模型

转化为Iris Y(1, 3) = X (1, 4) * W(4, 3) + b(3,) 三个偏置项

此网络为全连接网络

神经网络执行前向传播 y = x * w + b

因为W, B是随机初始化,所以答案不准确

运用损失函数定义预测值(y)与标准答案(y_)之间的差距。

损失函数可以判断当前W和b的优劣,当损失函数值最小时,W和b最优

损失函数的表达方法之一就是:均方误差:MSE(y, y_) =

表示网络前向传播推理与标准答案之间的差距。

目的:找到最优的W和b

梯度:函数对各个参数求偏导后的向量。函数梯度下降方向是函数减小的方向

梯度下降法:沿损失函数梯度下降的方向,寻找损失函数的最小值,得到最优的参数的方法。

学习率:当学习率设置的过小时,收敛过程变得缓慢,过大,会在错过最小值

梯度下降法更新参数的计算。 lr 学习率

求wt+1 = wt - lr*对wt求偏导

这里假设损失函数为(W+1)^2, 对w进行求偏导

复制代码
import tensorflow as tf

w = tf.Variable(tf.constant(5, dtype=tf.float32))
lr = 0.2
epoch = 40

for epoch in range(epoch):  # for epoch 定义顶层循环,表示对数据集循环epoch次,此例数据集数据仅有1个w,初始化时候constant赋值为5,循环40次迭代。
    with tf.GradientTape() as tape:  # with结构到grads框起了梯度的计算过程。
        loss = tf.square(w + 1)
    grads = tape.gradient(loss, w)  # .gradient函数告知谁对谁求导

    w.assign_sub(lr * grads)  # .assign_sub 对变量做自减 即:w -= lr*grads 即 w = w - lr*grads
    print("After %s epoch,w is %f,loss is %f" % (epoch, w.numpy(), loss))

# lr初始值:0.2   请自改学习率  0.001  0.999 看收敛过程
# 最终目的:找到 loss 最小 即 w = -1 的最优参数w
相关推荐
云边云科技7 分钟前
零售行业新店网络零接触部署场景下,如何选择SDWAN
运维·服务器·网络·人工智能·安全·边缘计算·零售
audyxiao00117 分钟前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
Monkey的自我迭代34 分钟前
机器学习总复习
人工智能·机器学习
大千AI助手34 分钟前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
用户51914958484544 分钟前
耶稣蓝队集体防护Bash脚本:多模块协同防御实战
人工智能·aigc
☺����1 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码1
人工智能·python·音视频
Black_Rock_br1 小时前
本地部署的终极多面手:Qwen2.5-Omni-3B,视频剪、音频混、图像生、文本写全搞定
人工智能·音视频
电商API大数据接口开发Cris1 小时前
Java Spring Boot 集成淘宝 SDK:实现稳定可靠的商品信息查询服务
前端·数据挖掘·api
用什么都重名1 小时前
《GPT-OSS 模型全解析:OpenAI 回归开源的 Mixture-of-Experts 之路》
人工智能·大模型·openai·gpt-oss