神经网络设计过程

1.可根据Iris特征直接判断

2.神经网络方法,采集大量的Iris特征,分类对应标签,构成数据集。

将数据集喂入搭好的神经网络结构,网络通过反向传播优化参数得到模型。

有新的网络送入到模型里,模型会给出识别结果。

3.具体实现过程。

Iris有4个特征,分类总共三种,构成的神经网络如下所示

MP模型

转化为Iris Y(1, 3) = X (1, 4) * W(4, 3) + b(3,) 三个偏置项

此网络为全连接网络

神经网络执行前向传播 y = x * w + b

因为W, B是随机初始化,所以答案不准确

运用损失函数定义预测值(y)与标准答案(y_)之间的差距。

损失函数可以判断当前W和b的优劣,当损失函数值最小时,W和b最优

损失函数的表达方法之一就是:均方误差:MSE(y, y_) =

表示网络前向传播推理与标准答案之间的差距。

目的:找到最优的W和b

梯度:函数对各个参数求偏导后的向量。函数梯度下降方向是函数减小的方向

梯度下降法:沿损失函数梯度下降的方向,寻找损失函数的最小值,得到最优的参数的方法。

学习率:当学习率设置的过小时,收敛过程变得缓慢,过大,会在错过最小值

梯度下降法更新参数的计算。 lr 学习率

求wt+1 = wt - lr*对wt求偏导

这里假设损失函数为(W+1)^2, 对w进行求偏导

复制代码
import tensorflow as tf

w = tf.Variable(tf.constant(5, dtype=tf.float32))
lr = 0.2
epoch = 40

for epoch in range(epoch):  # for epoch 定义顶层循环,表示对数据集循环epoch次,此例数据集数据仅有1个w,初始化时候constant赋值为5,循环40次迭代。
    with tf.GradientTape() as tape:  # with结构到grads框起了梯度的计算过程。
        loss = tf.square(w + 1)
    grads = tape.gradient(loss, w)  # .gradient函数告知谁对谁求导

    w.assign_sub(lr * grads)  # .assign_sub 对变量做自减 即:w -= lr*grads 即 w = w - lr*grads
    print("After %s epoch,w is %f,loss is %f" % (epoch, w.numpy(), loss))

# lr初始值:0.2   请自改学习率  0.001  0.999 看收敛过程
# 最终目的:找到 loss 最小 即 w = -1 的最优参数w
相关推荐
m0_650108241 分钟前
【论文精读】SV3D:基于视频扩散模型的单图多视角合成与3D生成
人工智能·论文精读·视频扩散模型·单图 3d 生成
力江2 分钟前
攻克维吾尔语识别的技术实践(多语言智能识别系统)
人工智能·python·自然语言处理·语音识别·unicode·维吾尔语
糖葫芦君15 分钟前
基于树结构突破大模型自身能力
人工智能·深度学习·大模型
诗句藏于尽头16 分钟前
MediaPipe+OpenCV的python实现交互式贪吃蛇小游戏
人工智能·python·opencv
汽车仪器仪表相关领域17 分钟前
汽车排放检测的 “模块化核心”:HORIBA OBS-ONE GS Unit 气体分析单元技术解析
大数据·人工智能·功能测试·车载系统·汽车·安全性测试·汽车检测
恒点虚拟仿真31 分钟前
“AI+XR”赋能智慧研创中心:告别AI焦虑,重塑教师未来
人工智能·xr·虚拟仿真·虚拟仿真教学·xr研创中心·数字教师·未来教师
2501_9389312541 分钟前
解构AI营销获客工具的四大智能中枢与价值逻辑
人工智能·机器学习·自动驾驶
Liquad Li1 小时前
汽车配件 AI 系统:重构汽车配件管理与多语言内容生成新范式
人工智能
小白狮ww1 小时前
VASP 教程:使用 VASP 进行机器学习力场训练
人工智能·深度学习·机器学习·大模型·分子动力学·计算机程序·vasp
ayingmeizi1631 小时前
重构增长:生成式AI如何将CRM打造为企业的销售大脑
人工智能·重构