论文阅读2-《Dynamic Multimodal Fusion》

摘要

(DynMM),一种新的方法,自适应融合多模态数据和 d在推理过程中生成依赖于数据的前向路径。为此,我们提出了一种门控功能来提供基于多模态特征和一个的模态级或融合级决策提高计算效率的源感知损失函数。

细节

模态级别决策

  • 假设有三种模态,x1,x2,x3,则有6种专家网络:E1(x1), E2(x2), E3(x3),E4(x1, x2), E5(x2, x3), E6(x1, x2), E7(x1, x2, x3);
  • 利用一个门控,选择B个专家网络:y =

    其中,xi表示第i位专家作为输入的模态的子集;
    假设有两种模态:

融合级别决策

在融合的过程中加入决策:oij表示每个中间模块的输出,

损失函数

C(Ei)表示执行一个专家网络Ei的计算成本。类似地,C(Oi,j)表示第j个细胞中第i个融合操作的计算代价;Ltask为任务的损失。
但是门控g是one-hot是离散的不可微,所以变成一个软值,

训练阶段

  • pretrain stage
    在训练的早期阶段遵循门网络的稀疏决策会导致偏差,很少被选择的分支有更少和更小的权重更新;糟糕的性能可能导致它们被选择的次数更少(因此永远不会改进);所以要保证每个分支在门控模块参与进来之前都得到了完全的优化;
    对于模态级的DynMM,充分地训练了每个专家网络;
    对于融合级的DynMM,对每个融合单元采用随机决策(即从候选操作集合中随机选择一个操作),从而使动态网络的每条路径都是一致的。
  • 微调
    第二阶段:微调。在这个阶段,我们将门控网络纳入到我们的优化过程中。利用上述介绍的重参数化技术,我们共同优化了动态网络 具有以端到端方式进行的门控网络。
相关推荐
m0_650108246 小时前
ZeroMatch:基于预训练大视觉模型的零样本 RGB-D 点云配准
论文阅读·rgb-d点云配准·zeromatch·预训练视觉模型·零样本配准·手工几何特征
檐下翻书17311 小时前
互联网企业组织结构图在线设计 扁平化架构模板
论文阅读·人工智能·信息可视化·架构·流程图·论文笔记
EEPI17 小时前
【论文阅读】VLA-pilot:Towards Deploying VLA without Fine-Tuning
论文阅读
一碗白开水一17 小时前
【论文阅读】VQ-VAE|Neural Discrete Representation Learning首个提出 codebook 机制的生成模型
论文阅读·人工智能·pytorch·深度学习·算法·迁移学习
张较瘦_19 小时前
[论文阅读] AI + 软件工程 | 告别“大海捞针”:LLM+自然语言摘要,破解多仓库微服务漏洞定位难题
论文阅读·人工智能·软件工程
一碗白开水一20 小时前
【论文阅读】DALL-E 123系列论文概述
论文阅读·人工智能·pytorch·深度学习·算法
m0_650108242 天前
CenterPoint:基于中心点的 3D 目标检测与跟踪框架
论文阅读·自动驾驶·centerpoint·3d目标检测与跟踪·激光雷达点云·中心点3d目标表示
m0_650108242 天前
PointPillars:激光雷达点云 3D 目标检测的高效编码器方案
论文阅读·自动驾驶·机器人导航·激光雷达点云检测·激光雷达单模态bev·bev目标检测
xieyan08112 天前
论文阅读_FinRL-DeepSeek:大语言模型赋能的风险敏感强化学习交易代理
论文阅读·人工智能·语言模型
飞Link2 天前
【论文笔记】《Improving action segmentation via explicit similarity measurement》
论文阅读·深度学习·算法·计算机视觉