论文阅读2-《Dynamic Multimodal Fusion》

摘要

(DynMM),一种新的方法,自适应融合多模态数据和 d在推理过程中生成依赖于数据的前向路径。为此,我们提出了一种门控功能来提供基于多模态特征和一个的模态级或融合级决策提高计算效率的源感知损失函数。

细节

模态级别决策

  • 假设有三种模态,x1,x2,x3,则有6种专家网络:E1(x1), E2(x2), E3(x3),E4(x1, x2), E5(x2, x3), E6(x1, x2), E7(x1, x2, x3);
  • 利用一个门控,选择B个专家网络:y =

    其中,xi表示第i位专家作为输入的模态的子集;
    假设有两种模态:

融合级别决策

在融合的过程中加入决策:oij表示每个中间模块的输出,

损失函数

C(Ei)表示执行一个专家网络Ei的计算成本。类似地,C(Oi,j)表示第j个细胞中第i个融合操作的计算代价;Ltask为任务的损失。
但是门控g是one-hot是离散的不可微,所以变成一个软值,

训练阶段

  • pretrain stage
    在训练的早期阶段遵循门网络的稀疏决策会导致偏差,很少被选择的分支有更少和更小的权重更新;糟糕的性能可能导致它们被选择的次数更少(因此永远不会改进);所以要保证每个分支在门控模块参与进来之前都得到了完全的优化;
    对于模态级的DynMM,充分地训练了每个专家网络;
    对于融合级的DynMM,对每个融合单元采用随机决策(即从候选操作集合中随机选择一个操作),从而使动态网络的每条路径都是一致的。
  • 微调
    第二阶段:微调。在这个阶段,我们将门控网络纳入到我们的优化过程中。利用上述介绍的重参数化技术,我们共同优化了动态网络 具有以端到端方式进行的门控网络。
相关推荐
AustinCyy6 小时前
【论文笔记】ADL: A Declarative Language for Agent-Based Chatbots
论文阅读
墨绿色的摆渡人1 天前
论文笔记(一百一十八)One2Any: One-Reference 6D Pose Estimation for Any Object
论文阅读
崔高杰1 天前
【论文阅读笔记】Agent Memory相关文献追踪——异构存储和经验记忆相关
论文阅读·笔记
李加号pluuuus1 天前
【论文阅读】ColorFlow: Retrieval-Augmented Image Sequence Colorization
论文阅读
DuHz1 天前
自动驾驶雷达干扰缓解:探索主动策略论文精读
论文阅读·人工智能·算法·机器学习·自动驾驶·汽车·信号处理
m0_650108241 天前
Alpamayo-R1:打通推理与动作预测,迈向稳健 L4 级自动驾驶
论文阅读·端到端自动驾驶·融合结构化因果推理与车辆控制·长尾场景稳健性·开环轨迹预测·闭环驾驶安全
m0_650108242 天前
Diffusion-Planner:基于扩散模型的自动驾驶灵活引导闭环规划
论文阅读·自动驾驶·扩散模型·联合预测与规划建模·分类器引导机制
StfinnWu2 天前
论文阅读 Deep Residual Learning for Image Recognition
论文阅读·人工智能·深度学习
PeterClerk2 天前
计算机视觉(CV)期刊(按 CCF 推荐目录 A/B/C + 交叉方向整理
论文阅读·图像处理·人工智能·深度学习·搜索引擎·计算机视觉·计算机期刊
youcans_3 天前
【DeepSeek论文精读】17. 通过可扩展查找的条件记忆:大语言模型稀疏化的新维度
论文阅读·人工智能·语言模型·长短时记忆网络·稀疏