论文阅读2-《Dynamic Multimodal Fusion》

摘要

(DynMM),一种新的方法,自适应融合多模态数据和 d在推理过程中生成依赖于数据的前向路径。为此,我们提出了一种门控功能来提供基于多模态特征和一个的模态级或融合级决策提高计算效率的源感知损失函数。

细节

模态级别决策

  • 假设有三种模态,x1,x2,x3,则有6种专家网络:E1(x1), E2(x2), E3(x3),E4(x1, x2), E5(x2, x3), E6(x1, x2), E7(x1, x2, x3);
  • 利用一个门控,选择B个专家网络:y =

    其中,xi表示第i位专家作为输入的模态的子集;
    假设有两种模态:

融合级别决策

在融合的过程中加入决策:oij表示每个中间模块的输出,

损失函数

C(Ei)表示执行一个专家网络Ei的计算成本。类似地,C(Oi,j)表示第j个细胞中第i个融合操作的计算代价;Ltask为任务的损失。
但是门控g是one-hot是离散的不可微,所以变成一个软值,

训练阶段

  • pretrain stage
    在训练的早期阶段遵循门网络的稀疏决策会导致偏差,很少被选择的分支有更少和更小的权重更新;糟糕的性能可能导致它们被选择的次数更少(因此永远不会改进);所以要保证每个分支在门控模块参与进来之前都得到了完全的优化;
    对于模态级的DynMM,充分地训练了每个专家网络;
    对于融合级的DynMM,对每个融合单元采用随机决策(即从候选操作集合中随机选择一个操作),从而使动态网络的每条路径都是一致的。
  • 微调
    第二阶段:微调。在这个阶段,我们将门控网络纳入到我们的优化过程中。利用上述介绍的重参数化技术,我们共同优化了动态网络 具有以端到端方式进行的门控网络。
相关推荐
墨绿色的摆渡人11 小时前
论文笔记(一百零八)Simulation-based pipeline tailors training data for dexterous robots
论文阅读
森诺Alyson13 小时前
前沿技术借鉴研讨-2025.12.9(胎儿面部异常检测/超声标准平面检测/宫内生长受限)
论文阅读·人工智能·经验分享·深度学习·论文笔记
wzx_Eleven17 小时前
【论文阅读】多密钥低通信轮次的联邦学习安全聚合
论文阅读·深度学习·神经网络·安全·同态加密
做cv的小昊17 小时前
VLM相关论文阅读:【LoRA】Low-rank Adaptation of Large Language Models
论文阅读·人工智能·深度学习·计算机视觉·语言模型·自然语言处理·transformer
magic_ll20 小时前
【论文阅读】【yolo系列】YOLOv10: Real-Time End-to-End Object Detection
论文阅读·yolo·目标检测
北温凉20 小时前
【论文阅读】2023_B_Connectivity Analysis in EEG Data
论文阅读
m0_650108241 天前
ZeroMatch:基于预训练大视觉模型的零样本 RGB-D 点云配准
论文阅读·rgb-d点云配准·zeromatch·预训练视觉模型·零样本配准·手工几何特征
檐下翻书1731 天前
互联网企业组织结构图在线设计 扁平化架构模板
论文阅读·人工智能·信息可视化·架构·流程图·论文笔记
EEPI2 天前
【论文阅读】VLA-pilot:Towards Deploying VLA without Fine-Tuning
论文阅读
一碗白开水一2 天前
【论文阅读】VQ-VAE|Neural Discrete Representation Learning首个提出 codebook 机制的生成模型
论文阅读·人工智能·pytorch·深度学习·算法·迁移学习