论文阅读2-《Dynamic Multimodal Fusion》

摘要

(DynMM),一种新的方法,自适应融合多模态数据和 d在推理过程中生成依赖于数据的前向路径。为此,我们提出了一种门控功能来提供基于多模态特征和一个的模态级或融合级决策提高计算效率的源感知损失函数。

细节

模态级别决策

  • 假设有三种模态,x1,x2,x3,则有6种专家网络:E1(x1), E2(x2), E3(x3),E4(x1, x2), E5(x2, x3), E6(x1, x2), E7(x1, x2, x3);
  • 利用一个门控,选择B个专家网络:y =

    其中,xi表示第i位专家作为输入的模态的子集;
    假设有两种模态:

融合级别决策

在融合的过程中加入决策:oij表示每个中间模块的输出,

损失函数

C(Ei)表示执行一个专家网络Ei的计算成本。类似地,C(Oi,j)表示第j个细胞中第i个融合操作的计算代价;Ltask为任务的损失。
但是门控g是one-hot是离散的不可微,所以变成一个软值,

训练阶段

  • pretrain stage
    在训练的早期阶段遵循门网络的稀疏决策会导致偏差,很少被选择的分支有更少和更小的权重更新;糟糕的性能可能导致它们被选择的次数更少(因此永远不会改进);所以要保证每个分支在门控模块参与进来之前都得到了完全的优化;
    对于模态级的DynMM,充分地训练了每个专家网络;
    对于融合级的DynMM,对每个融合单元采用随机决策(即从候选操作集合中随机选择一个操作),从而使动态网络的每条路径都是一致的。
  • 微调
    第二阶段:微调。在这个阶段,我们将门控网络纳入到我们的优化过程中。利用上述介绍的重参数化技术,我们共同优化了动态网络 具有以端到端方式进行的门控网络。
相关推荐
DuHz6 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
c0d1ng17 小时前
二月第二周周报(论文阅读)
论文阅读
DuHz18 小时前
通过超宽带信号估计位置——论文精读
论文阅读·人工智能·机器学习·自动驾驶·汽车
Biomamba生信基地18 小时前
《Science Advances》11例样本图谱文章,空间转录组揭示特发性肺纤维化病理特征
论文阅读·空间转录组分析
觉醒大王3 天前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
觉醒大王3 天前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
张较瘦_3 天前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
m0_650108243 天前
IntNet:面向协同自动驾驶的通信驱动多智能体强化学习框架
论文阅读·marl·多智能体系统·网联自动驾驶·意图共享·自适应通讯·端到端协同
m0_650108244 天前
Raw2Drive:基于对齐世界模型的端到端自动驾驶强化学习方案
论文阅读·机器人·强化学习·端到端自动驾驶·双流架构·引导机制·mbrl自动驾驶
快降重科研小助手4 天前
前瞻与规范:AIGC降重API的技术演进与负责任使用
论文阅读·aigc·ai写作·降重·降ai·快降重