AIGC爬虫实战(一)

前言

传统的网络爬虫系统效率较低且难以应对复杂多变的网页环境

基于AIGC技术的智能化爬虫,则可以大幅提升爬虫的自主性和适应性,从而更高效地完成网络数据的采集和分析任务

本文将通过一系列实战案例,深入探讨AIGC技术在网络爬虫开发中的具体应用

代码实现

首先安装一下request-promise和cheerio

js 复制代码
npm install request-promise

npm install cheerio
  1. request-promise:

    • request-promise 是一个基于 request 库的 Promise 封装库。它使得发出 HTTP 请求变得更加简单和优雅。

    • 与原生的 fetch API 相比,request-promise 提供了更丰富的功能,如支持 cookie、代理设置、自定义报头等。

    • 使用 request-promise 可以轻松地进行异步 HTTP 请求,并通过 Promise 链处理结果,大大简化了回调嵌套的问题。

    • 示例代码:

      javascript 复制代码
      const rp = require('request-promise');
      
      rp('https://www.example.com')
        .then((htmlString) => {
          console.log(htmlString);
        })
        .catch((err) => {
          console.error(err);
        });
  2. cheerio:

    • cheerio 是一个用于解析和处理 HTML 的 jQuery 核心功能的实现。

    • 它提供了一套类似于浏览器中 jQuery 的 API,让开发者可以使用熟悉的选择器语法来遍历、搜索和操作 HTML 文档。

    • 与 JSDOM 等完整的 DOM 解析器相比,cheerio 更加轻量级和高效,适合在服务器端进行 HTML 解析和数据提取。

    • 示例代码:

      javascript 复制代码
      const cheerio = require('cheerio');
      
      const $ = cheerio.load('<h2 class="title">Hello, cheerio</h2>');
      
      $('h2.title').text('Hello, world.');
      $('h2').addClass('welcome');
      
      console.log($.html());
      // Output: <h2 class="title welcome">Hello, world.</h2>

接下来我们开始书写我们的代码

  1. 引入所需的Node.js模块:

    • request-promise: 用于发送HTTP请求并获取页面内容
    • cheerio: 用于解析HTML页面,提取所需的数据
    • fs: 用于写入JSON文件
  2. 定义基础URL:

    • basicUrl = 'https://movie.douban.com/top250'
  3. 定义getMovieInfo函数:

    • 该函数接受一个HTML节点作为参数
    • 使用cheerio解析节点,提取电影的标题、信息和评分
    • 将提取的数据封装成一个对象并返回
  4. 定义getPage函数:

    • 该函数接受一个URL和页码作为参数
    • 使用request-promise发送HTTP请求获取页面内容
    • 使用cheerio解析页面,提取每部电影的信息
    • 将提取的数据封装成一个数组并返回
  5. 定义main函数:

    • 该函数为程序入口点
    • 设置需要爬取的页数为25页(250部电影)
    • 使用for循环遍历每页,调用getPage函数获取数据
    • 将所有页面的数据合并成一个列表
    • 使用fs.writeFile将列表写入到output.json文件中
js 复制代码
let request = require('request-promise') // 需要安装
let cheerio = require('cheerio') // 需要安装
let fs = require('fs')
let basicUrl = 'https://movie.douban.com/top250'

function getMovieInfo(node) {
    let $ = cheerio.load(node)
    let titles = $('.info .hd span')
    titles = ([]).map.call(titles, t => {
        return $(t).text()
    })
    let bd = $('.info .bd')
    let info = bd.find('p').text()
    let score = bd.find('.star .rating_num').text()
    return { titles, info, score }
}
async function getPage(url, num) {
    let html = await request({
        url
    })
    console.log('连接成功!', `正在爬取第${num + 1}页数据`)
    let $ = cheerio.load(html)
    let movieNodes = $('#content .article .grid_view').find('.item')
    let movieList = ([]).map.call(movieNodes, node => {
        return getMovieInfo(node)
    })
    return movieList
}
async function main() {
    let count = 25
    let list = []
    for (let i = 0; i < count; i++) {
        let url = basicUrl + `?start=${25 * i}`
        list.push(... await getPage(url, i))
    }
    console.log(list.length)
    fs.writeFile('./output.json', JSON.stringify(list), 'utf-8', () => {
        console.log('生成json文件成功!')
    })
}
main()

可以看到我们爬取的数据都在json文件中

可以看到我们的数据格式还是有点问题的

接下来我们将第一个数据将它交给AI处理一下

可以看到AI给我们处理的不错,所以AI能够有效的提高我们爬取处理数据的效率

下篇文章我们将讲解一下如何在项目中调用AI的API去快捷处理数据

总结

本文将通过实战案例,深入探讨AIGC技术在网络爬虫开发中的具体应用

基于AIGC技术的智能化爬虫,则可以大幅提升爬虫的自主性和适应性,从而更高效地完成网络数据的采集和分析任务,AI在项目中的大力使用能够有效得提升项目的能力

相关推荐
IE065 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器9 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
C语言魔术师11 分钟前
【小游戏篇】三子棋游戏
前端·算法·游戏
匹马夕阳1 小时前
Vue 3中导航守卫(Navigation Guard)结合Axios实现token认证机制
前端·javascript·vue.js
你熬夜了吗?1 小时前
日历热力图,月度数据可视化图表(日活跃图、格子图)vue组件
前端·vue.js·信息可视化
一水鉴天1 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
井底哇哇7 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证7 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
桂月二二8 小时前
探索前端开发中的 Web Vitals —— 提升用户体验的关键技术
前端·ux
AI浩8 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer