《昇思25天学习打卡营第1天|QuickStart》

说在前面

曾经接触过华为的910B服务级显卡,当时基于910B做了一些开发的工作,但是总感觉做的事情太低层,想要能自顶向下的了解下,因此开始了MindSpore的学习。另外也想给予提供的显卡,简单尝试下llm模型的训练,不知道提供的显卡能否支持llm模型训练。

1. QuickStart

介绍了云开发环境的使用方法,以及昇思全家桶。

通过这张图看,我比较感兴趣AI Compiler部分,不过在入门阶段还没有介绍,希望可以通过后续的学习过程中,能了解一些。

接下来用两个推理的小例子,开发下兴趣:

  1. 使用 vit 进行图像分类
    应该是有预训练的模型,这里直接通过封装好的脚本,进行简单的测试:
    跑了vit模型的推理过程,能够将雏菊🌼识别成雏菊。
  2. 使用 BERT 进行中文命名实体识别
    通过一个预训练模型,可以识别命名实体。
    输入是:小明作为开发人员去北京参加华为开发者大会。
    输出是:
json 复制代码
[
	[{
		'entity_group': 'position',
		'start': 4,
		'end': 6,
		'score': 0.72418,
		'word': '开发人'
	}, {
		'entity_group': 'address',
		'start': 9,
		'end': 10,
		'score': 0.9383,
		'word': '北京'
	}, {
		'entity_group': 'company',
		'start': 13,
		'end': 14,
		'score': 0.5476,
		'word': '华为'
	}]
]

可以看出来,Bert识别出了三个词,还算可以吧。在执行的时候是下载的模型,感觉可以直接可以将常用模型都打到镜像中,减少网络消耗。

接下来是一个训练的小例子:

  1. 经典的手写体识别:
    可能是便于入门,这里很多模型封装的都比较简单。几乎点点按钮就可以了,手写体识别的模型名称叫做:lenet,执行了训练的动作,在cpu上训练还是花了几分钟的,过程中的日志信息:

    loss是在逐渐降低的。
    最终的识别结果也是符合预期,只能说,lenet是真的开创性的,不过我还是想要叫做AlexNet

打卡

最后在执行一边,并且打卡。

今天的学习就到这里,整体体验很顺畅,希望接下来每天可以保持,或者一天可以打多个卡。

相关推荐
LFly_ice2 小时前
学习React-24-路由传参
前端·学习·react.js
陈天伟教授3 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
毕设源码-钟学长3 小时前
【开题答辩全过程】以 高校课程学习评价系统设计与实现为例,包含答辩的问题和答案
学习
fruge5 小时前
从第三方库中偷师:学习 Lodash 的函数封装技巧
学习
lingggggaaaa7 小时前
免杀对抗——C2远控篇&C&C++&DLL注入&过内存核晶&镂空新增&白加黑链&签名程序劫持
c语言·c++·学习·安全·网络安全·免杀对抗
陈天伟教授8 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
我先去打把游戏先8 小时前
ESP32学习笔记(基于IDF):基于OneNet的ESP32的OTA功能
笔记·物联网·学习·云计算·iphone·aws
初願致夕霞8 小时前
学习笔记——基础hash思想及其简单C++实现
笔记·学习·哈希算法
小女孩真可爱8 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
hd51cc8 小时前
C++ 学习笔记 名称
笔记·学习