《昇思25天学习打卡营第1天|QuickStart》

说在前面

曾经接触过华为的910B服务级显卡,当时基于910B做了一些开发的工作,但是总感觉做的事情太低层,想要能自顶向下的了解下,因此开始了MindSpore的学习。另外也想给予提供的显卡,简单尝试下llm模型的训练,不知道提供的显卡能否支持llm模型训练。

1. QuickStart

介绍了云开发环境的使用方法,以及昇思全家桶。

通过这张图看,我比较感兴趣AI Compiler部分,不过在入门阶段还没有介绍,希望可以通过后续的学习过程中,能了解一些。

接下来用两个推理的小例子,开发下兴趣:

  1. 使用 vit 进行图像分类
    应该是有预训练的模型,这里直接通过封装好的脚本,进行简单的测试:
    跑了vit模型的推理过程,能够将雏菊🌼识别成雏菊。
  2. 使用 BERT 进行中文命名实体识别
    通过一个预训练模型,可以识别命名实体。
    输入是:小明作为开发人员去北京参加华为开发者大会。
    输出是:
json 复制代码
[
	[{
		'entity_group': 'position',
		'start': 4,
		'end': 6,
		'score': 0.72418,
		'word': '开发人'
	}, {
		'entity_group': 'address',
		'start': 9,
		'end': 10,
		'score': 0.9383,
		'word': '北京'
	}, {
		'entity_group': 'company',
		'start': 13,
		'end': 14,
		'score': 0.5476,
		'word': '华为'
	}]
]

可以看出来,Bert识别出了三个词,还算可以吧。在执行的时候是下载的模型,感觉可以直接可以将常用模型都打到镜像中,减少网络消耗。

接下来是一个训练的小例子:

  1. 经典的手写体识别:
    可能是便于入门,这里很多模型封装的都比较简单。几乎点点按钮就可以了,手写体识别的模型名称叫做:lenet,执行了训练的动作,在cpu上训练还是花了几分钟的,过程中的日志信息:

    loss是在逐渐降低的。
    最终的识别结果也是符合预期,只能说,lenet是真的开创性的,不过我还是想要叫做AlexNet

打卡

最后在执行一边,并且打卡。

今天的学习就到这里,整体体验很顺畅,希望接下来每天可以保持,或者一天可以打多个卡。

相关推荐
兔兔爱学习兔兔爱学习2 小时前
Spring Al学习7:ImageModel
java·学习·spring
江苏世纪龙科技5 小时前
新能源汽车动力系统拆装与检测实训MR软件介绍-比亚迪秦EV标准版
学习
im_AMBER5 小时前
数据结构 09 二叉树作业
数据结构·笔记·学习
wdfk_prog7 小时前
[Linux]学习笔记系列 -- [kernel][time]hrtimer
linux·笔记·学习
四谎真好看8 小时前
Java 黑马程序员学习笔记(进阶篇21)
java·开发语言·笔记·学习·学习笔记
立志成为大牛的小牛9 小时前
数据结构——三十三、Dijkstra算法(王道408)
数据结构·笔记·学习·考研·算法·图论
何故染尘優9 小时前
docker学习笔记,从入门开始!
笔记·学习·docker
D.....l10 小时前
STM32学习(MCU控制)(WiFi and MQTT)
stm32·单片机·学习
摆烂积极分子10 小时前
安卓开发学习10-中级控件
学习
少爷晚安。10 小时前
Java零基础学习完整笔记,基于Intellij IDEA开发工具,笔记持续更新中
java·笔记·学习