LangChain —— 多模态大模型的 prompt template

文章目录


一、如何直接将多模态数据传输给模型

在这里,我们演示了如何将多模式输入直接传递给模型。对于其他的支持多模态输入的模型提供者,langchain 在类中提供了内在逻辑来转化为期待的格式。

传入图像最常用的方法是将其作为字节字符串传入。这应该适用于大多数模型集成。

python 复制代码
import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
        },
    ],
)
response = model.invoke([message])
print(response.content)

我们可以直接在"image_URL"类型的内容块中提供图像URL。但是注意,只有一些模型提供程序支持此功能。

python 复制代码
message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {"type": "image_url", "image_url": {"url": image_url}},
    ],
)
response = model.invoke([message])
print(response.content)

我们也可以传多个图片。

python 复制代码
message = HumanMessage(
    content=[
        {"type": "text", "text": "are these two images the same?"},
        {"type": "image_url", "image_url": {"url": image_url}},
        {"type": "image_url", "image_url": {"url": image_url}},
    ],
)
response = model.invoke([message])
print(response.content)

二、如何使用 mutimodal prompts

在这里,我们将描述一下怎么使用 prompt templates 来为模型格式化 multimodal imputs。

python 复制代码
import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "Describe the image provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data}"},
                }
            ],
        ),
    ]
)

我们也可以给模型传入多个图片。

python 复制代码
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "compare the two pictures provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data1}"},
                },
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data2}"},
                },
            ],
        ),
    ]
)

chain = prompt | model

response = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)
相关推荐
SakuraOnTheWay2 小时前
LangChain实践:初识LangChain
langchain
极速learner3 小时前
n8n本地安装的两种方法:小白入门大白话版本
人工智能·prompt
Fuly10244 小时前
langchain基础教程(6)---构建知识库--①向量数据库-chromadb
数据库·langchain
nvd114 小时前
Agent架构升级:解决Gemini超大Prompt处理问题
架构·prompt
阿杰学AI4 小时前
AI核心知识23——大语言模型之System Prompt(简洁且通俗易懂版)
人工智能·ai·语言模型·prompt·aigc·system prompt
AhaPuPu4 小时前
LLM Agent Attack- Indirect Prompt Injection
网络·人工智能·prompt
优选资源分享4 小时前
Prompt Optimizer v2.2.1:开源AI提示词优化工具
prompt·实用工具
风雨中的小七4 小时前
解密Prompt系列65. 三巨头关于大模型内景的硬核论文
prompt
大模型真好玩4 小时前
LangChain1.0实战之多模态RAG系统(三)——多模态RAG系统PDF解析功能实现
人工智能·langchain·agent
技术传感器5 小时前
Prompt工程的艺术与科学:从“对话“到“编程“,掌握与大模型高效协作的元技能
人工智能·microsoft·架构·prompt·aigc