LangChain —— 多模态大模型的 prompt template

文章目录


一、如何直接将多模态数据传输给模型

在这里,我们演示了如何将多模式输入直接传递给模型。对于其他的支持多模态输入的模型提供者,langchain 在类中提供了内在逻辑来转化为期待的格式。

传入图像最常用的方法是将其作为字节字符串传入。这应该适用于大多数模型集成。

python 复制代码
import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
        },
    ],
)
response = model.invoke([message])
print(response.content)

我们可以直接在"image_URL"类型的内容块中提供图像URL。但是注意,只有一些模型提供程序支持此功能。

python 复制代码
message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {"type": "image_url", "image_url": {"url": image_url}},
    ],
)
response = model.invoke([message])
print(response.content)

我们也可以传多个图片。

python 复制代码
message = HumanMessage(
    content=[
        {"type": "text", "text": "are these two images the same?"},
        {"type": "image_url", "image_url": {"url": image_url}},
        {"type": "image_url", "image_url": {"url": image_url}},
    ],
)
response = model.invoke([message])
print(response.content)

二、如何使用 mutimodal prompts

在这里,我们将描述一下怎么使用 prompt templates 来为模型格式化 multimodal imputs。

python 复制代码
import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "Describe the image provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data}"},
                }
            ],
        ),
    ]
)

我们也可以给模型传入多个图片。

python 复制代码
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "compare the two pictures provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data1}"},
                },
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data2}"},
                },
            ],
        ),
    ]
)

chain = prompt | model

response = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)
相关推荐
upp13 小时前
[bug]langchain agent报错Invalid Format: Missing ‘Action Input:‘ after ‘Action:‘
javascript·python·langchain·bug
刘培玉--大王14 小时前
Langchain Agent封装的工具
microsoft·langchain
SHIPKING3931 天前
【LangChain核心组件】Memory:让大语言模型拥有持续对话记忆的工程实践
数据库·python·langchain·llm·memory
meisongqing1 天前
【大模型】GPT-4、DeepSeek应用与Prompt使用技巧
人工智能·大模型·prompt
aaaak_1 天前
Google 官方提示工程 (Prompt Engineering)白皮书 总结
prompt
架构精进之路1 天前
LangGraph:如何用“图思维”轻松管理多Agent协作?
后端·langchain·ai编程
爱吃肉c1 天前
大模型提示词prompt
prompt
续亮~1 天前
提示词 (Prompt)
java·人工智能·prompt·ai编程·springai
带娃的IT创业者1 天前
《AI大模型应知应会100篇》第21篇:Prompt设计原则:让大模型精准理解你的需求
人工智能·prompt
Awesome Baron1 天前
Langchain + Gemini API调用基本操作
python·langchain·llm