pytorch-pytorch之LSTM

目录

  • [1. nn.LSTM](#1. nn.LSTM)
  • [2. nn.LSTMCell](#2. nn.LSTMCell)

1. nn.LSTM

初始化函数输入参数与RNN相同,分别是input_size,hidden_size和num_layer

foward函数也与RNN类似,只不过返回值除了out外,ht变为(ht,ct)

代码见下图:

2. nn.LSTMCell

初始化函数输入参数与nn.LSTM类似

forward函数与nn.LSTM的区别是没有out

单层代码如下图:

和RNN的Cell类似,Cell单元循环更新h,c

2层无非就是多创建了一个cell2、h2、c2,并同时循环更新h1,c1,h2,c2,多层以此类推。

相关推荐
陈天伟教授4 分钟前
人工智能应用- 语言处理:04.统计机器翻译
人工智能·自然语言处理·机器翻译
Dfreedom.11 分钟前
图像处理中的对比度增强与锐化
图像处理·人工智能·opencv·锐化·对比度增强
wenzhangli715 分钟前
OoderAgent 企业版 2.0 发布的意义:一次生态战略的全面升级
人工智能·开源
AI_567829 分钟前
SQL性能优化全景指南:从量子执行计划到自适应索引的终极实践
数据库·人工智能·学习·adb
cyyt34 分钟前
深度学习周报(2.2~2.8)
人工智能·深度学习
阿杰学AI35 分钟前
AI核心知识92——大语言模型之 Self-Attention Mechanism(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·transformer·自注意力机制
陈天伟教授35 分钟前
人工智能应用- 语言处理:03.机器翻译:规则方法
人工智能·自然语言处理·机器翻译
Σίσυφος19001 小时前
PCL 姿态估计 RANSAC + SVD(基于特征匹配)
人工智能·机器学习
Warren2Lynch1 小时前
C4 vs UML:从入门到结合使用的完整指南(含 Visual Paradigm AI 实操)
人工智能·机器学习·uml
Ryan老房1 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居