pytorch-pytorch之LSTM

目录

  • [1. nn.LSTM](#1. nn.LSTM)
  • [2. nn.LSTMCell](#2. nn.LSTMCell)

1. nn.LSTM

初始化函数输入参数与RNN相同,分别是input_size,hidden_size和num_layer

foward函数也与RNN类似,只不过返回值除了out外,ht变为(ht,ct)

代码见下图:

2. nn.LSTMCell

初始化函数输入参数与nn.LSTM类似

forward函数与nn.LSTM的区别是没有out

单层代码如下图:

和RNN的Cell类似,Cell单元循环更新h,c

2层无非就是多创建了一个cell2、h2、c2,并同时循环更新h1,c1,h2,c2,多层以此类推。

相关推荐
mucheni2 分钟前
迅为iTOP-RK3576开发板/核心板6TOPS超强算力NPU适用于ARM PC、边缘计算、个人移动互联网设备及其他多媒体产品
arm开发·人工智能·边缘计算
Jamence3 分钟前
多模态大语言模型arxiv论文略读(三十六)
人工智能·语言模型·自然语言处理
猿饵块15 分钟前
opencv--图像变换
人工智能·opencv·计算机视觉
LucianaiB22 分钟前
【金仓数据库征文】_AI 赋能数据库运维:金仓KES的智能化未来
运维·数据库·人工智能·金仓数据库 2025 征文·数据库平替用金仓
jndingxin37 分钟前
OpenCV 图形API(63)图像结构分析和形状描述符------计算图像中非零像素的边界框函数boundingRect()
人工智能·opencv·计算机视觉
旧故新长42 分钟前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
微学AI1 小时前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆1 小时前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤1 小时前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创1 小时前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室