昇思25天学习打卡营第23天|LSTM+CRF序列标注

1. 序列标注简介

序列标注是自然语言处理中的一项任务,它涉及到对输入序列中的每个元素(Token)进行分类标注。常见的序列标注任务包括分词、词性标注和命名实体识别(NER)。例如,在NER中,模型需要识别文本中的地名、人名等实体。

2. 条件随机场(CRF)

CRF是一种用于序列标注的概率图模型。与简单的多分类问题不同,CRF能够捕捉序列中Token之间的依赖关系。例如,在NER中,如果一个词被标记为实体的一部分(I标签),那么它的前一个词应该是实体的开始(B标签)或也是实体的一部分(I标签)。

CRF的关键概念包括:
  • 发射概率:表示给定Token的条件下,它被分配某个标签的概率。
  • 转移概率:表示从一个标签转移到另一个标签的概率。
  • 线性链CRF:一种特殊类型的CRF,它考虑了序列中相邻Token之间的转移。

3. CRF的数学定义

CRF通过以下公式定义序列y在给定输入序列x下的概率:

P(y\|x) = \\frac{\\exp(\\text{Score}(x,y))}{\\sum_{y' \\in Y} \\exp(\\text{Score}(x,y'))}

其中,Score函数计算序列x和y的得分,包括发射概率和转移概率的贡献。

4. CRF层的实现

教程提供了使用MindSpore框架实现CRF层的代码,包括:

  • Score计算:根据发射概率和转移概率计算序列得分。
  • Normalizer计算:使用动态规划算法计算所有可能序列得分的对数指数和,以提高效率。
  • Viterbi算法:一种动态规划算法,用于在解码阶段找到最优的标签序列。

5. BiLSTM+CRF模型

该模型结合了双向长短期记忆网络(BiLSTM)和CRF。BiLSTM用于提取序列特征,而CRF用于序列标注。模型结构如下:

  • Embedding层:将词转换为词向量。
  • LSTM层:双向LSTM网络,提取序列特征。
  • Dense层:将LSTM的输出转换为发射概率矩阵。
  • CRF层:进行序列标注的最终预测。

6. 训练和预测

教程还介绍了如何准备数据、实例化模型、选择优化器、训练模型以及使用模型进行预测。包括:

  • 数据准备:创建词汇表和标签表,将文本序列转换为模型可接受的格式。
  • 模型训练:使用SGD优化器进行训练,并通过tqdm库可视化训练过程。
  • 预测和解码:使用模型进行预测,并通过Viterbi算法找到最优的标签序列。

7. 结果展示

最后,教程展示了如何将模型预测的标签索引转换回实际的标签,并打印输出结果,以验证模型的效果。

LSTM+CRF序列标注

相关推荐
阿达_优阅达9 小时前
HubSpot 营销指南 | AI 时代,如何同时做好 SEO 与 AEO?
人工智能·ai·seo·营销自动化·hubspot·aeo·sales
kkce10 小时前
vsping 推出海外检测节点的核心目的
大数据·网络·人工智能
bin915310 小时前
当AI优化搜索引擎算法:Go初级开发者的创意突围实战指南
人工智能·算法·搜索引擎·工具·ai工具
人工智能技术咨询.10 小时前
深度学习—卷积神经网络
人工智能
机器之心10 小时前
Manus被收购,智谱也定了8天后上市
人工智能·openai
王中阳Go10 小时前
手把手教你用 Go + Eino 搭建一个企业级 RAG 知识库(含代码与踩坑)
人工智能·后端·go
iconball10 小时前
个人用云计算学习笔记 --37 Zabbix
运维·笔记·学习·云计算·zabbix
Coder个人博客11 小时前
Llama.cpp 整体架构分析
人工智能·自动驾驶·llama
江上鹤.14811 小时前
Day 50 CBAM 注意力机制
人工智能·深度学习
deephub11 小时前
大规模向量检索优化:Binary Quantization 让 RAG 系统内存占用降低 32 倍
人工智能·大语言模型·向量检索·rag