昇思25天学习打卡营第23天|LSTM+CRF序列标注

1. 序列标注简介

序列标注是自然语言处理中的一项任务,它涉及到对输入序列中的每个元素(Token)进行分类标注。常见的序列标注任务包括分词、词性标注和命名实体识别(NER)。例如,在NER中,模型需要识别文本中的地名、人名等实体。

2. 条件随机场(CRF)

CRF是一种用于序列标注的概率图模型。与简单的多分类问题不同,CRF能够捕捉序列中Token之间的依赖关系。例如,在NER中,如果一个词被标记为实体的一部分(I标签),那么它的前一个词应该是实体的开始(B标签)或也是实体的一部分(I标签)。

CRF的关键概念包括:
  • 发射概率:表示给定Token的条件下,它被分配某个标签的概率。
  • 转移概率:表示从一个标签转移到另一个标签的概率。
  • 线性链CRF:一种特殊类型的CRF,它考虑了序列中相邻Token之间的转移。

3. CRF的数学定义

CRF通过以下公式定义序列y在给定输入序列x下的概率:

P(y\|x) = \\frac{\\exp(\\text{Score}(x,y))}{\\sum_{y' \\in Y} \\exp(\\text{Score}(x,y'))}

其中,Score函数计算序列x和y的得分,包括发射概率和转移概率的贡献。

4. CRF层的实现

教程提供了使用MindSpore框架实现CRF层的代码,包括:

  • Score计算:根据发射概率和转移概率计算序列得分。
  • Normalizer计算:使用动态规划算法计算所有可能序列得分的对数指数和,以提高效率。
  • Viterbi算法:一种动态规划算法,用于在解码阶段找到最优的标签序列。

5. BiLSTM+CRF模型

该模型结合了双向长短期记忆网络(BiLSTM)和CRF。BiLSTM用于提取序列特征,而CRF用于序列标注。模型结构如下:

  • Embedding层:将词转换为词向量。
  • LSTM层:双向LSTM网络,提取序列特征。
  • Dense层:将LSTM的输出转换为发射概率矩阵。
  • CRF层:进行序列标注的最终预测。

6. 训练和预测

教程还介绍了如何准备数据、实例化模型、选择优化器、训练模型以及使用模型进行预测。包括:

  • 数据准备:创建词汇表和标签表,将文本序列转换为模型可接受的格式。
  • 模型训练:使用SGD优化器进行训练,并通过tqdm库可视化训练过程。
  • 预测和解码:使用模型进行预测,并通过Viterbi算法找到最优的标签序列。

7. 结果展示

最后,教程展示了如何将模型预测的标签索引转换回实际的标签,并打印输出结果,以验证模型的效果。

LSTM+CRF序列标注

相关推荐
大江东去浪淘尽千古风流人物几秒前
【bug】bug记录学习,Win系统下爆栈的表现, chkstk.asm 实际是栈溢出
学习·bug
正经教主1 分钟前
【Trae+AI】和Trae学习搭建App_2.2.1:第4章·安卓APP调用Express后端实战1:前端调用后端
人工智能·学习·express
老蒋新思维2 分钟前
创客匠人峰会深度解析:知识变现的 “IP 资产化” 革命 —— 从 “运营流量” 到 “沉淀资产” 的长期增长逻辑
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
瀚岳-诸葛弩6 分钟前
对比tensorflow,从0开始学pytorch(三)--自定义层
人工智能·pytorch·tensorflow
正经教主6 分钟前
【Trae+AI】和Trae学习搭建App_1.2:第2章·App开发环境配置
android·学习·android studio
测试人社区-小明7 分钟前
AI在金融软件测试中的实践
人工智能·测试工具·金融·pycharm·机器人·github·量子计算
小哲慢慢来8 分钟前
机器学习基本概念
人工智能·机器学习
张较瘦_11 分钟前
[论文阅读] AI + 软件工程 | 叙事的力量+专家智慧:解锁定性软件工程研究的过去、现在与未来
论文阅读·人工智能·软件工程
算法与编程之美13 分钟前
机器学习测试模型的性能评估与探索
人工智能·机器学习
小毅&Nora16 分钟前
【人工智能】【深度学习】 ⑩ 图神经网络(GNN)从入门到工业落地:消息传递、稀疏计算与推荐/风控实战
人工智能·深度学习·图神经网络gnn