昇思25天学习打卡营第23天|LSTM+CRF序列标注

1. 序列标注简介

序列标注是自然语言处理中的一项任务,它涉及到对输入序列中的每个元素(Token)进行分类标注。常见的序列标注任务包括分词、词性标注和命名实体识别(NER)。例如,在NER中,模型需要识别文本中的地名、人名等实体。

2. 条件随机场(CRF)

CRF是一种用于序列标注的概率图模型。与简单的多分类问题不同,CRF能够捕捉序列中Token之间的依赖关系。例如,在NER中,如果一个词被标记为实体的一部分(I标签),那么它的前一个词应该是实体的开始(B标签)或也是实体的一部分(I标签)。

CRF的关键概念包括:
  • 发射概率:表示给定Token的条件下,它被分配某个标签的概率。
  • 转移概率:表示从一个标签转移到另一个标签的概率。
  • 线性链CRF:一种特殊类型的CRF,它考虑了序列中相邻Token之间的转移。

3. CRF的数学定义

CRF通过以下公式定义序列y在给定输入序列x下的概率:

P(y\|x) = \\frac{\\exp(\\text{Score}(x,y))}{\\sum_{y' \\in Y} \\exp(\\text{Score}(x,y'))}

其中,Score函数计算序列x和y的得分,包括发射概率和转移概率的贡献。

4. CRF层的实现

教程提供了使用MindSpore框架实现CRF层的代码,包括:

  • Score计算:根据发射概率和转移概率计算序列得分。
  • Normalizer计算:使用动态规划算法计算所有可能序列得分的对数指数和,以提高效率。
  • Viterbi算法:一种动态规划算法,用于在解码阶段找到最优的标签序列。

5. BiLSTM+CRF模型

该模型结合了双向长短期记忆网络(BiLSTM)和CRF。BiLSTM用于提取序列特征,而CRF用于序列标注。模型结构如下:

  • Embedding层:将词转换为词向量。
  • LSTM层:双向LSTM网络,提取序列特征。
  • Dense层:将LSTM的输出转换为发射概率矩阵。
  • CRF层:进行序列标注的最终预测。

6. 训练和预测

教程还介绍了如何准备数据、实例化模型、选择优化器、训练模型以及使用模型进行预测。包括:

  • 数据准备:创建词汇表和标签表,将文本序列转换为模型可接受的格式。
  • 模型训练:使用SGD优化器进行训练,并通过tqdm库可视化训练过程。
  • 预测和解码:使用模型进行预测,并通过Viterbi算法找到最优的标签序列。

7. 结果展示

最后,教程展示了如何将模型预测的标签索引转换回实际的标签,并打印输出结果,以验证模型的效果。

LSTM+CRF序列标注

相关推荐
我命由我123454 小时前
Photoshop - Photoshop 工具栏(22)单行选框工具
学习·ui·职场和发展·求职招聘·职场发展·学习方法·photoshop
算家计算5 小时前
一张白纸,无限画布:SkyReels刚刚重新定义了AI视频创作
人工智能·aigc·资讯
Kandiy180253981875 小时前
PHY6252国产蓝牙低成本透传芯片BLE5.2智能灯控智能家居
人工智能·物联网·智能家居·射频工程
机器之心5 小时前
字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与
人工智能·openai
新智元5 小时前
AI 教父 Hinton 末日警告!你必须失业,AI 万亿泡沫豪赌才能「赢」
人工智能·openai
新智元5 小时前
CUDA 再见了!寒武纪亮出软件全家桶
人工智能·openai
User_芊芊君子5 小时前
【成长纪实】我的鸿蒙成长之路:从“小白”到独立开发,带你走进鸿蒙的世界
学习·华为·harmonyos·鸿蒙开发
oe10195 小时前
好文与笔记分享 A Survey of Context Engineering for Large Language Models(下)
人工智能·笔记·语言模型·agent
有为少年5 小时前
告别乱码:OpenCV 中文路径(Unicode)读写的解决方案
人工智能·opencv·计算机视觉
FreeCode6 小时前
LangChain1.0智能体开发:模型使用
人工智能·langchain·agent