【CEEMDAN-VMD-CNN-LSTM】双重分解+卷积神经网络+长短期记忆神经网络多变量回归预测,多变量输入模型

双重分解(Dual Decomposition)、卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)结合的多变量回归预测需要详细的实现和数据情况才能给出具体的示例代码。以下是一个基本的框架和描述,供您参考。

数据准备:

假设有多个输入特征 X1, X2, ..., Xn 和一个目标变量 Y,形状分别为 (样本数, 特征数) 和 (样本数, 1)。

假设数据已经准备好,并且已经根据需要进行了预处理,例如标准化。

双重分解(Dual Decomposition):

双重分解是一种用于处理多变量时间序列数据的技术,它将时间序列数据分解为趋势成分和季节性成分,并分别建模预测。

首先,对每个输入特征 Xi 进行季节性分解,得到趋势成分 Trend_i 和季节性成分 Seasonality_i。

对于目标变量 Y,也进行季节性分解,得到趋势成分 Trend_Y 和季节性成分 Seasonality_Y。

卷积神经网络(CNN):

使用卷积神经网络来捕捉时间序列数据的局部模式和特征。

将输入特征 Xi 和目标变量 Y 分别作为输入,构建 CNN 模型,可以根据数据的特点和需求设计具体的网络结构。

CNN 可以包含一些卷积层、池化层和全连接层,以及适当的激活函数和正则化方法。

长短期记忆神经网络(LSTM):

使用长短期记忆神经网络来捕捉时间序列数据中的长期依赖关系。

将趋势成分 Trend_i, Trend_Y 和季节性成分 Seasonality_i, Seasonality_Y 作为输入,构建 LSTM 模型,可以根据数据的特点和需求设计具体的网络结构。

LSTM 可以包含一些 LSTM 层和全连接层,以及适当的激活函数和正则化方法。

模型集成和预测:

将 CNN 和 LSTM 的输出进行集成,可以使用加权平均或其他集成方法。

最终的预测结果即为集成后的输出,可以反向进行趋势成分和季节性成分的分解,得到最终的预测值。

相关推荐
永霖光电_UVLED1 天前
IVWorks率先将8英寸GaN纳米线片商业化
人工智能·神经网络·生成对抗网络
无风听海1 天前
神经网络之奇异值分解
神经网络·线性代数·机器学习
~~李木子~~1 天前
五子棋项目Alpha-Beta剪枝与MCTS+神经网络实现人机对弈算法对比报告
神经网络·算法·剪枝
weixin_421133411 天前
深度强化学习,用神经网络代替 Q-table
人工智能·深度学习·神经网络
大千AI助手1 天前
Graph-R1:智能图谱检索增强的结构化多轮推理框架
人工智能·神经网络·大模型·rag·检索增强生成·大千ai助手·graph-r1
青云交1 天前
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证
java·随机森林·机器学习·lstm·压力测试·联邦学习·金融风险
大千AI助手1 天前
差分隐私:机器学习和数据发布中的隐私守护神
人工智能·神经网络·机器学习·dp·隐私保护·差分隐私·大千ai助手
也许是_1 天前
大模型原理之深度学习与神经网络入门
人工智能·深度学习·神经网络
qzhqbb2 天前
神经网络—— 学习与感知器
神经网络·学习
青云交2 天前
Java 大视界 -- 基于 Java 的大数据实时流处理在能源行业设备状态监测与故障预测中的应用
flink·lstm·设备状态监测·故障预测·实时流处理·java 大数据·能源行业