【CEEMDAN-VMD-CNN-LSTM】双重分解+卷积神经网络+长短期记忆神经网络多变量回归预测,多变量输入模型

双重分解(Dual Decomposition)、卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)结合的多变量回归预测需要详细的实现和数据情况才能给出具体的示例代码。以下是一个基本的框架和描述,供您参考。

数据准备:

假设有多个输入特征 X1, X2, ..., Xn 和一个目标变量 Y,形状分别为 (样本数, 特征数) 和 (样本数, 1)。

假设数据已经准备好,并且已经根据需要进行了预处理,例如标准化。

双重分解(Dual Decomposition):

双重分解是一种用于处理多变量时间序列数据的技术,它将时间序列数据分解为趋势成分和季节性成分,并分别建模预测。

首先,对每个输入特征 Xi 进行季节性分解,得到趋势成分 Trend_i 和季节性成分 Seasonality_i。

对于目标变量 Y,也进行季节性分解,得到趋势成分 Trend_Y 和季节性成分 Seasonality_Y。

卷积神经网络(CNN):

使用卷积神经网络来捕捉时间序列数据的局部模式和特征。

将输入特征 Xi 和目标变量 Y 分别作为输入,构建 CNN 模型,可以根据数据的特点和需求设计具体的网络结构。

CNN 可以包含一些卷积层、池化层和全连接层,以及适当的激活函数和正则化方法。

长短期记忆神经网络(LSTM):

使用长短期记忆神经网络来捕捉时间序列数据中的长期依赖关系。

将趋势成分 Trend_i, Trend_Y 和季节性成分 Seasonality_i, Seasonality_Y 作为输入,构建 LSTM 模型,可以根据数据的特点和需求设计具体的网络结构。

LSTM 可以包含一些 LSTM 层和全连接层,以及适当的激活函数和正则化方法。

模型集成和预测:

将 CNN 和 LSTM 的输出进行集成,可以使用加权平均或其他集成方法。

最终的预测结果即为集成后的输出,可以反向进行趋势成分和季节性成分的分解,得到最终的预测值。

相关推荐
liwulin05065 分钟前
【PYTHON-YOLOV8N】yoloface+pytorch+cnn进行面部表情识别
python·yolo·cnn
代码洲学长26 分钟前
卷积神经网络CNN
人工智能·神经网络·cnn
ASS-ASH3 小时前
机器人灵巧手:技术演进、市场格局与未来前景
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·灵巧手
黑客思维者3 小时前
一文读懂神经网络分类:从基础架构到前沿融合
人工智能·神经网络·分类
Francek Chen3 小时前
【自然语言处理】应用02:情感分析:使用循环神经网络
人工智能·pytorch·rnn·深度学习·神经网络·自然语言处理
简简单单做算法4 小时前
基于PSO优化CNN-BiLSTM网络模型的多输入单输出回归预测算法matlab仿真
matlab·回归·cnn·回归预测·cnn-bilstm·pso-cnn-bilstm
Lun3866buzha4 小时前
【深度学习】Mask R-CNN在温室番茄成熟度检测中的应用——基于ResNet18与FPN的多级特征融合分类系统
深度学习·r语言·cnn
龙腾AI白云4 小时前
DNN案例一步步构建深层神经网络(二)三、深层神经网络
人工智能·神经网络
roman_日积跬步-终至千里4 小时前
【计算机视觉(17)】语义理解-训练神经网络2_优化器_正则化_超参数
人工智能·神经网络·计算机视觉