【CEEMDAN-VMD-CNN-LSTM】双重分解+卷积神经网络+长短期记忆神经网络多变量回归预测,多变量输入模型

双重分解(Dual Decomposition)、卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)结合的多变量回归预测需要详细的实现和数据情况才能给出具体的示例代码。以下是一个基本的框架和描述,供您参考。

数据准备:

假设有多个输入特征 X1, X2, ..., Xn 和一个目标变量 Y,形状分别为 (样本数, 特征数) 和 (样本数, 1)。

假设数据已经准备好,并且已经根据需要进行了预处理,例如标准化。

双重分解(Dual Decomposition):

双重分解是一种用于处理多变量时间序列数据的技术,它将时间序列数据分解为趋势成分和季节性成分,并分别建模预测。

首先,对每个输入特征 Xi 进行季节性分解,得到趋势成分 Trend_i 和季节性成分 Seasonality_i。

对于目标变量 Y,也进行季节性分解,得到趋势成分 Trend_Y 和季节性成分 Seasonality_Y。

卷积神经网络(CNN):

使用卷积神经网络来捕捉时间序列数据的局部模式和特征。

将输入特征 Xi 和目标变量 Y 分别作为输入,构建 CNN 模型,可以根据数据的特点和需求设计具体的网络结构。

CNN 可以包含一些卷积层、池化层和全连接层,以及适当的激活函数和正则化方法。

长短期记忆神经网络(LSTM):

使用长短期记忆神经网络来捕捉时间序列数据中的长期依赖关系。

将趋势成分 Trend_i, Trend_Y 和季节性成分 Seasonality_i, Seasonality_Y 作为输入,构建 LSTM 模型,可以根据数据的特点和需求设计具体的网络结构。

LSTM 可以包含一些 LSTM 层和全连接层,以及适当的激活函数和正则化方法。

模型集成和预测:

将 CNN 和 LSTM 的输出进行集成,可以使用加权平均或其他集成方法。

最终的预测结果即为集成后的输出,可以反向进行趋势成分和季节性成分的分解,得到最终的预测值。

相关推荐
brent4231 分钟前
DAY47 简单CNN
深度学习·神经网络·cnn
云雾J视界6 分钟前
AI+IoT双轮驱动:构建风电设备预测性维护数字孪生体的全栈技术实践
人工智能·物联网·ai·lstm·iot·scada·金风科技
AI街潜水的八角44 分钟前
基于keras框架的MobileNet深度学习神经网络垃圾识别分类系统源码
深度学习·神经网络·keras
权泽谦1 小时前
医疗预测项目:CNN + XGBoost 实战全流程
人工智能·神经网络·cnn
Hcoco_me2 小时前
大模型面试题42:从小白视角递进讲解大模型训练的重计算
人工智能·rnn·深度学习·lstm·transformer
Hcoco_me3 小时前
大模型面试题45:从小白视角递进讲解DeepSeek V3的MLA机制
人工智能·深度学习·lstm·transformer·word2vec
云蝠呼叫大模型联络中心4 小时前
BATH不再一家独大?深入测评2026大模型呼叫市场新秩序
人工智能·深度学习·神经网络·自然语言处理·nlp·语音识别·信息与通信
啊巴矲4 小时前
小白从零开始勇闯人工智能:深度学习初级篇(卷积神经网络上)
人工智能·深度学习·cnn
AI街潜水的八角4 小时前
基于keras框架的Vgg深度学习神经网络衣服多标签分类识别系统
深度学习·神经网络·keras
All The Way North-4 小时前
池化层全解析:MaxPool vs AvgPool、参数详解、避坑指南与PyTorch实现
pytorch·深度学习·cnn·pooling·池化层·maxpool2d