【CEEMDAN-VMD-CNN-LSTM】双重分解+卷积神经网络+长短期记忆神经网络多变量回归预测,多变量输入模型

双重分解(Dual Decomposition)、卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)结合的多变量回归预测需要详细的实现和数据情况才能给出具体的示例代码。以下是一个基本的框架和描述,供您参考。

数据准备:

假设有多个输入特征 X1, X2, ..., Xn 和一个目标变量 Y,形状分别为 (样本数, 特征数) 和 (样本数, 1)。

假设数据已经准备好,并且已经根据需要进行了预处理,例如标准化。

双重分解(Dual Decomposition):

双重分解是一种用于处理多变量时间序列数据的技术,它将时间序列数据分解为趋势成分和季节性成分,并分别建模预测。

首先,对每个输入特征 Xi 进行季节性分解,得到趋势成分 Trend_i 和季节性成分 Seasonality_i。

对于目标变量 Y,也进行季节性分解,得到趋势成分 Trend_Y 和季节性成分 Seasonality_Y。

卷积神经网络(CNN):

使用卷积神经网络来捕捉时间序列数据的局部模式和特征。

将输入特征 Xi 和目标变量 Y 分别作为输入,构建 CNN 模型,可以根据数据的特点和需求设计具体的网络结构。

CNN 可以包含一些卷积层、池化层和全连接层,以及适当的激活函数和正则化方法。

长短期记忆神经网络(LSTM):

使用长短期记忆神经网络来捕捉时间序列数据中的长期依赖关系。

将趋势成分 Trend_i, Trend_Y 和季节性成分 Seasonality_i, Seasonality_Y 作为输入,构建 LSTM 模型,可以根据数据的特点和需求设计具体的网络结构。

LSTM 可以包含一些 LSTM 层和全连接层,以及适当的激活函数和正则化方法。

模型集成和预测:

将 CNN 和 LSTM 的输出进行集成,可以使用加权平均或其他集成方法。

最终的预测结果即为集成后的输出,可以反向进行趋势成分和季节性成分的分解,得到最终的预测值。

相关推荐
这张生成的图像能检测吗3 小时前
(论文速读)WFF-Net:用于表面缺陷检测的可训练权重特征融合卷积神经网络
人工智能·深度学习·神经网络·缺陷检测·图像分割
shayudiandian3 小时前
RNN与LSTM详解:AI是如何“记住”信息的?
人工智能·rnn·lstm
jz_ddk3 小时前
[算法] 算法PK:LMS与RLS的对比研究
人工智能·神经网络·算法·信号处理·lms·rls·自适应滤波
化作星辰6 小时前
深度学习_神经网络激活函数
人工智能·深度学习·神经网络
nnn__nnn6 小时前
卷积神经网络经典架构全景解析:从 ILSVRC 竞赛到视觉技术的生态级演进
计算机视觉·架构·cnn
木头左11 小时前
自适应门控循环单元GRU-O与标准LSTM在量化交易策略中的性能对比实验
深度学习·gru·lstm
【建模先锋】12 小时前
基于密集连接的DenseNet故障诊断模型:实现高鲁棒性的深度故障诊断
人工智能·cnn·信号处理·故障诊断·轴承故障诊断·西储大学数据集
西猫雷婶16 小时前
CNN的四维Pytorch张量格式
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
IT阳晨。19 小时前
【神经网络与深度学习(吴恩达)】深度学习概论学习笔记
笔记·深度学习·神经网络