昇思25天学习打卡营第20天|CycleGAN图像风格迁移互换

模型简介

CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。

该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。其实在 CycleGAN 之前,就已经有了域迁移模型,比如 Pix2Pix ,但是 Pix2Pix 要求训练数据必须是成对的,而现实生活中,要找到两个域(画风)中成对出现的图片是相当困难的,因此 CycleGAN 诞生了,它只需要两种域的数据,而不需要他们有严格对应关系,是一种新的无监督的图像迁移网络。

就好比我们人类认知的时候,不可能所有的内容都学一遍,基本都是举一反三的,这个模型更加接近人类学习的过程,基本能做到举一反三。他不是需要严格对应的数据。

python 复制代码
# 可视化
# 通过 create_dict_iterator 函数将数据转换成字典迭代器,然后使用 matplotlib 模块可视化部分训练数据。
import numpy as np
import matplotlib.pyplot as plt

mean = 0.5 * 255
std = 0.5 * 255

plt.figure(figsize=(12, 5), dpi=60)
for i, data in enumerate(dataset.create_dict_iterator()):
    if i < 5:
        show_images_a = data["image_A"].asnumpy()
        show_images_b = data["image_B"].asnumpy()

        plt.subplot(2, 5, i+1)
        show_images_a = (show_images_a[0] * std + mean).astype(np.uint8).transpose((1, 2, 0))
        plt.imshow(show_images_a)
        plt.axis("off")

        plt.subplot(2, 5, i+6)
        show_images_b = (show_images_b[0] * std + mean).astype(np.uint8).transpose((1, 2, 0))
        plt.imshow(show_images_b)
        plt.axis("off")
    else:
        break
plt.show()

这里可以看到现在都是比较正常的图片,颜色,大小都比较合理。

下面是模型转换后的图片结果,可以看到他把水果的颜色做了准确替换,其他部分包括图三人物的颜色被准确保留。

相关推荐
集3049 小时前
C++多线程学习笔记
c++·笔记·学习
知南x10 小时前
【正点原子STM32MP157 可信任固件TF-A学习篇】(2) STM32MP1 中的 TF-A
stm32·嵌入式硬件·学习·stm32mp157
YJlio10 小时前
Active Directory 工具学习笔记(10.0):AdExplorer / AdInsight / AdRestore 导读与场景地图
网络·笔记·学习
子夜江寒10 小时前
Python 学习-Day8-执行其他应用程序
python·学习
●VON11 小时前
从单机应用到分布式调度:基于 HarmonyOS 构建车-空协同任务引擎
学习·华为·harmonyos·openharmony·开源鸿蒙
万变不离其宗_811 小时前
http学习笔记
笔记·学习
盐焗西兰花11 小时前
鸿蒙学习实战之路 - 避免冗余刷新最佳实践
学习·华为·harmonyos
Lynnxiaowen11 小时前
今天我们继续学习Kubernetes内容pod资源对象
运维·学习·容器·kubernetes·云计算
xier_ran12 小时前
关键词解释:对比学习(Contrastive Learning)
人工智能·深度学习·学习·机器学习·对比学习
andwhataboutit?12 小时前
GAN学习
深度学习·学习·生成对抗网络