rag学习笔记

目录

rag原理:

[RAG 的核心原理分步解析](#RAG 的核心原理分步解析)

[1. 用户提问(Query)](#1. 用户提问(Query))

[2. 检索(Retrieval)](#2. 检索(Retrieval))

[3. 增强提示(Augmented Prompt)](#3. 增强提示(Augmented Prompt))

[4. 生成(Generation)](#4. 生成(Generation))

[5. 输出最终答案](#5. 输出最终答案)

扩展:高级RAG技术


rag原理:

一文带你速通RAG、知识库和LLM!_rag知识库-CSDN博客

RAG(Retrieval-Augmented Generation,检索增强生成)是一种将信息检索文本生成 相结合的技术,旨在提升大语言模型(LLM)生成内容的准确性、时效性和事实性。其核心原理是通过实时检索外部知识源来补充LLM的内部知识,从而生成更可靠的回答。

RAG 的核心原理分步解析

以下是RAG工作流程的详细拆解:

1. 用户提问(Query)
  • 用户输入一个问题或指令(例如:"量子计算的最新突破有哪些?")。
2. 检索(Retrieval)
  • 语义检索 :将用户问题转化为向量(Embedding),在向量数据库中搜索语义相似的文档片段。

  • 知识来源:数据库可包含PDF、网页、企业文档、研究论文等结构化/非结构化数据。

  • 返回结果:系统返回Top-K个最相关的文本片段(例如:3-5个相关段落)。

3. 增强提示(Augmented Prompt)
  • 将检索到的文本片段与用户问题拼接,形成新的提示词(Prompt):

    复制代码
    根据以下信息回答问题:
    [检索到的文本片段1]
    [片段2]
    ...
    问题:{用户原始提问}
  • 示例提示:

    上下文:2024年IBM发布了量子处理器"Heron",错误率降低至...

    问题:量子计算的最新突破有哪些?

4. 生成(Generation)
  • LLM基于增强后的提示生成回答:

    • 模型会优先依赖检索到的权威信息,而非仅凭训练数据中的记忆。

    • 生成结果通常包含引用来源(如:"根据IBM 2024年的报告...")。

5. 输出最终答案
  • 生成融合了检索信息的自然语言回复,并确保关键事实与检索内容一致。

扩展:高级RAG技术

  • HyDE:先让LLM生成假设答案,再用其Embedding检索更相关文档。

  • 递归检索:对检索结果进一步检索,实现多跳推理。

  • 重排序(Re-Rank):用更精细的模型对检索结果二次排序。

相关推荐
知识分享小能手1 小时前
Bootstrap 5学习教程,从入门到精通,Bootstrap 5 表单验证语法知识点及案例代码(34)
前端·javascript·学习·typescript·bootstrap·html·css3
巴伦是只猫1 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
不爱说话的采儿2 小时前
UE5详细保姆教程(第四章)
笔记·ue5·游戏引擎·课程设计
weixin_418813872 小时前
Python-可视化学习笔记
笔记·python·学习
Haoea!2 小时前
Flink-05学习 接上节,将FlinkJedisPoolConfig 从Kafka写入Redis
学习·flink·kafka
Vic101012 小时前
Java 开发笔记:多线程查询逻辑的抽象与优化
java·服务器·笔记
笑鸿的学习笔记3 小时前
qt-C++笔记之setCentralWidget的使用
c++·笔记·qt
丁满与彭彭3 小时前
嵌入式学习笔记-MCU阶段-DAY01
笔记·单片机·学习
呼啦啦--隔壁老王4 小时前
dexopt学习待整理
学习
无限远的弧光灯4 小时前
c语言学习_函数递归
c语言·开发语言·学习