结合实体类型信息(2)——基于本体的知识图谱补全深度学习方法

1 引言

1.1 问题

目前KGC和KGE提案的两个主要缺点是:(1)它们没有利用本体信息;(二)对训练时未见的事实和新鲜事物不能预测的。

1.2 解决方案

一种新的知识图嵌入初始化方法。

1.3 结合的信息

知识库中的实体向量表示+编码后的本体信息------>增强 KGC

2基于本体的知识图谱补全深度学习方法

首先提出假设,如果使用嵌入来丰富e1的初始表示,则预测实体"Barack Obama"的链接(我们称之为e1)应该更容易,该嵌入试图反映e1是一位总统,因此也就是一位政治家。此外,如果"新鲜实体"的初始表示可以处理在训练时间中看不到的实体,则"新实体"也可以接收到来源于本体的额外信息。

具体做法:

首先,本体信息或本体知识库(OKB),如概念和类,必须从一般知识库(KB)(一般存在于诸如Freebase之类的多个通用KG)中分离出来,如个体或实例。

其次,为OKB和知识库中的实体选择初始表示。使用word2vec的向量的平均值被用于实体中包含的每个词。

第三,用其对应的编码 本体信息的OKB向量扩展知识库中的每个实体向量

第四,使用诸如NTN或RESCAL等已知方法来学习KGE模型后用于KGC。

相关推荐
中冕—霍格沃兹软件开发测试6 分钟前
探索性测试:思维驱动下的高效缺陷狩猎
人工智能·科技·开源·appium·bug
cnfalcon7 分钟前
ESP-IDF AI硬件开发技术问题记录
人工智能·esp-idf
陈佬昔没带相机8 分钟前
从罗永浩 x MiniMax 闫俊杰对谈中,一窥 AI 时代软件公司岗位变化
人工智能·程序员·敏捷开发
老马啸西风9 分钟前
成熟企业级技术平台-09-加密机 / 密钥管理服务 KMSS(Key Management & Security Service)
人工智能·深度学习·算法·职场和发展
2301_8018217111 分钟前
前期工作总结
人工智能
Ulana29 分钟前
计算机基础10大高频考题解析
java·人工智能·算法
windfantasy199031 分钟前
NCT与GESP哪个更好?线上监考与线下考点的便利性对比
人工智能
执笔论英雄32 分钟前
【LORA】
人工智能
Jerryhut1 小时前
Bev感知特征空间算法
人工智能
xian_wwq1 小时前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电