结合实体类型信息(2)——基于本体的知识图谱补全深度学习方法

1 引言

1.1 问题

目前KGC和KGE提案的两个主要缺点是:(1)它们没有利用本体信息;(二)对训练时未见的事实和新鲜事物不能预测的。

1.2 解决方案

一种新的知识图嵌入初始化方法。

1.3 结合的信息

知识库中的实体向量表示+编码后的本体信息------>增强 KGC

2基于本体的知识图谱补全深度学习方法

首先提出假设,如果使用嵌入来丰富e1的初始表示,则预测实体"Barack Obama"的链接(我们称之为e1)应该更容易,该嵌入试图反映e1是一位总统,因此也就是一位政治家。此外,如果"新鲜实体"的初始表示可以处理在训练时间中看不到的实体,则"新实体"也可以接收到来源于本体的额外信息。

具体做法:

首先,本体信息或本体知识库(OKB),如概念和类,必须从一般知识库(KB)(一般存在于诸如Freebase之类的多个通用KG)中分离出来,如个体或实例。

其次,为OKB和知识库中的实体选择初始表示。使用word2vec的向量的平均值被用于实体中包含的每个词。

第三,用其对应的编码 本体信息的OKB向量扩展知识库中的每个实体向量

第四,使用诸如NTN或RESCAL等已知方法来学习KGE模型后用于KGC。

相关推荐
mwq3012312 小时前
Claude 完整代码教程(转载)
人工智能
DisonTangor12 小时前
【阿里拥抱开源】阿里inclusionAI开源多模态Ming-flash-omni 2.0
人工智能·开源·aigc
MaoziShan12 小时前
CMU Subword Modeling | 01 Things Smaller than Words
人工智能·机器学习·自然语言处理
文艺倾年12 小时前
【免训练&测试时扩展】Code Agent可控进化
人工智能·软件工程·强化学习·vibecoding
宇擎智脑科技12 小时前
SurrealDB:面向AI原生应用的新一代多模型数据库深度解析
数据库·人工智能·ai-native
一品威客爱开发12 小时前
网游 APP 开发:聚焦交互体验与多端协同
人工智能
前沿AI12 小时前
中关村科金 × 中国电信 以「文旅大模型 + 智能客服」点亮自贡灯会智慧服务新标杆
人工智能
木斯佳12 小时前
HarmonyOS实战(解决方案篇)—企业AI资产利旧:如何将已有智能体快速接入鸿蒙生态
人工智能·华为·harmonyos
A小码哥12 小时前
开发利器 openCode + Oh My OpenCode 四大核心智能体:Sisyphus、Prometheus、Atlas 与 Hephaestus
人工智能
HelloDong12 小时前
中国 AI Agent 争夺战:通义 1 亿 MAU、豆包预装手机、Kimi 做开发者工具——三条路线全拆解
人工智能