结合实体类型信息(2)——基于本体的知识图谱补全深度学习方法

1 引言

1.1 问题

目前KGC和KGE提案的两个主要缺点是:(1)它们没有利用本体信息;(二)对训练时未见的事实和新鲜事物不能预测的。

1.2 解决方案

一种新的知识图嵌入初始化方法。

1.3 结合的信息

知识库中的实体向量表示+编码后的本体信息------>增强 KGC

2基于本体的知识图谱补全深度学习方法

首先提出假设,如果使用嵌入来丰富e1的初始表示,则预测实体"Barack Obama"的链接(我们称之为e1)应该更容易,该嵌入试图反映e1是一位总统,因此也就是一位政治家。此外,如果"新鲜实体"的初始表示可以处理在训练时间中看不到的实体,则"新实体"也可以接收到来源于本体的额外信息。

具体做法:

首先,本体信息或本体知识库(OKB),如概念和类,必须从一般知识库(KB)(一般存在于诸如Freebase之类的多个通用KG)中分离出来,如个体或实例。

其次,为OKB和知识库中的实体选择初始表示。使用word2vec的向量的平均值被用于实体中包含的每个词。

第三,用其对应的编码 本体信息的OKB向量扩展知识库中的每个实体向量

第四,使用诸如NTN或RESCAL等已知方法来学习KGE模型后用于KGC。

相关推荐
IT_陈寒12 分钟前
Vue 3.4 性能优化实战:7个被低估的Composition API技巧让你的应用提速30%
前端·人工智能·后端
while(努力):进步26 分钟前
人工智能与边缘计算结合在智能电网负荷预测与优化调度中的应用探索
人工智能·边缘计算
2501_9411421327 分钟前
边缘计算与5G结合在智慧交通信号优化与实时路况预测中的创新应用
人工智能·5g·边缘计算
Alang35 分钟前
【LM-PDF】一个大模型时代的 PDF 极速预览方案是如何实现的?
前端·人工智能·后端
kupeThinkPoem2 小时前
代码生成工具Amazon CodeWhisperer介绍
人工智能
weixin79893765432...2 小时前
前端开发者如何拥抱 AI-Agent(科普)
人工智能·ai
晨非辰3 小时前
【数据结构初阶系列】归并排序全透视:从算法原理全分析到源码实战应用
运维·c语言·数据结构·c++·人工智能·python·深度学习
菠菠萝宝4 小时前
【Java手搓RAGFlow】-3- 用户认证与权限管理
java·开发语言·人工智能·llm·openai·qwen·rag
youngfengying5 小时前
《轻量化 Transformers:开启计算机视觉新篇》
人工智能·计算机视觉
搞科研的小刘选手7 小时前
【同济大学主办】第十一届能源资源与环境工程研究进展国际学术会议(ICAESEE 2025)
大数据·人工智能·能源·材质·材料工程·地理信息