结合实体类型信息(2)——基于本体的知识图谱补全深度学习方法

1 引言

1.1 问题

目前KGC和KGE提案的两个主要缺点是:(1)它们没有利用本体信息;(二)对训练时未见的事实和新鲜事物不能预测的。

1.2 解决方案

一种新的知识图嵌入初始化方法。

1.3 结合的信息

知识库中的实体向量表示+编码后的本体信息------>增强 KGC

2基于本体的知识图谱补全深度学习方法

首先提出假设,如果使用嵌入来丰富e1的初始表示,则预测实体"Barack Obama"的链接(我们称之为e1)应该更容易,该嵌入试图反映e1是一位总统,因此也就是一位政治家。此外,如果"新鲜实体"的初始表示可以处理在训练时间中看不到的实体,则"新实体"也可以接收到来源于本体的额外信息。

具体做法:

首先,本体信息或本体知识库(OKB),如概念和类,必须从一般知识库(KB)(一般存在于诸如Freebase之类的多个通用KG)中分离出来,如个体或实例。

其次,为OKB和知识库中的实体选择初始表示。使用word2vec的向量的平均值被用于实体中包含的每个词。

第三,用其对应的编码 本体信息的OKB向量扩展知识库中的每个实体向量

第四,使用诸如NTN或RESCAL等已知方法来学习KGE模型后用于KGC。

相关推荐
大千AI助手6 分钟前
Softmax函数:深度学习中的多类分类基石与进化之路
人工智能·深度学习·机器学习·分类·softmax·激活函数·大千ai助手
韩曙亮8 分钟前
【人工智能】AI 人工智能 技术 学习路径分析 ② ( 深度学习 -> 机器视觉 )
人工智能·深度学习·学习·ai·机器视觉
九千七52613 分钟前
sklearn学习(3)数据降维
人工智能·python·学习·机器学习·sklearn
黑客思维者16 分钟前
Salesforce Einstein GPT 人机协同运营的核心应用场景与工作流分析
人工智能·gpt·深度学习·salesforce·rag·人机协同·einstein gpt
多恩Stone40 分钟前
【ModelScope-1】数据集稀疏检出(Sparse Checkout)来下载指定目录
人工智能·python·算法·aigc
郭庆汝41 分钟前
(七)自然语言处理笔记——Ai医生
人工智能·笔记·自然语言处理
生而为虫1 小时前
28.Python处理图像
人工智能·python·计算机视觉·pillow·pygame
Dev7z1 小时前
基于OpenCV和MATLAB的椭圆检测系统的设计与实现
人工智能·opencv·matlab
青春不败 177-3266-05201 小时前
R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表
人工智能·r语言·生态学·meta分析·统计学·环境科学·农业科学
薛定e的猫咪1 小时前
【论文精读】ICLR 2023 --- 作为离线强化学习强表达能力策略类的扩散策略
人工智能·深度学习·机器学习·stable diffusion