结合实体类型信息(2)——基于本体的知识图谱补全深度学习方法

1 引言

1.1 问题

目前KGC和KGE提案的两个主要缺点是:(1)它们没有利用本体信息;(二)对训练时未见的事实和新鲜事物不能预测的。

1.2 解决方案

一种新的知识图嵌入初始化方法。

1.3 结合的信息

知识库中的实体向量表示+编码后的本体信息------>增强 KGC

2基于本体的知识图谱补全深度学习方法

首先提出假设,如果使用嵌入来丰富e1的初始表示,则预测实体"Barack Obama"的链接(我们称之为e1)应该更容易,该嵌入试图反映e1是一位总统,因此也就是一位政治家。此外,如果"新鲜实体"的初始表示可以处理在训练时间中看不到的实体,则"新实体"也可以接收到来源于本体的额外信息。

具体做法:

首先,本体信息或本体知识库(OKB),如概念和类,必须从一般知识库(KB)(一般存在于诸如Freebase之类的多个通用KG)中分离出来,如个体或实例。

其次,为OKB和知识库中的实体选择初始表示。使用word2vec的向量的平均值被用于实体中包含的每个词。

第三,用其对应的编码 本体信息的OKB向量扩展知识库中的每个实体向量

第四,使用诸如NTN或RESCAL等已知方法来学习KGE模型后用于KGC。

相关推荐
跨境猫小妹2 分钟前
亚马逊合规新纪元:隐形战场里,谁在悄悄出局?
大数据·人工智能·产品运营·跨境电商·防关联
合方圆~小文7 分钟前
不同画面,三个镜头实时监控拍摄方案
数据结构·数据库·人工智能
lx74160269821 分钟前
change clip架构学习
人工智能·学习·计算机视觉
玄微云26 分钟前
AI智能体开发公司推荐:玄微科技专注垂直场景的实践者
大数据·人工智能·软件需求
谷粒.1 小时前
测试数据管理难题的7种破解方案
运维·开发语言·网络·人工智能·python
一RTOS一1 小时前
“智”赋百业 | 东土科技:为工业人工智能铸造“中国根系”
人工智能·科技
周周爱喝粥呀1 小时前
向量检索:AI 是如何进行语义匹配的?
人工智能
深蓝电商API1 小时前
爬虫+大模型结合:让AI自动写XPath和清洗规则
人工智能·爬虫
WebGoC开发者2 小时前
【备赛指导】佛山市青少年科技创新大赛暨佛山市青少年人工智能科创节 智趣AI竞技赛 流程详解
人工智能·经验分享·科技·ai·青少年科技竞赛
大千AI助手2 小时前
模糊集合理论:从Zadeh奠基到现代智能系统融合
人工智能·机器学习·集合·模糊理论·大千ai助手·模糊集合·fuzzysets