结合实体类型信息(2)——基于本体的知识图谱补全深度学习方法

1 引言

1.1 问题

目前KGC和KGE提案的两个主要缺点是:(1)它们没有利用本体信息;(二)对训练时未见的事实和新鲜事物不能预测的。

1.2 解决方案

一种新的知识图嵌入初始化方法。

1.3 结合的信息

知识库中的实体向量表示+编码后的本体信息------>增强 KGC

2基于本体的知识图谱补全深度学习方法

首先提出假设,如果使用嵌入来丰富e1的初始表示,则预测实体"Barack Obama"的链接(我们称之为e1)应该更容易,该嵌入试图反映e1是一位总统,因此也就是一位政治家。此外,如果"新鲜实体"的初始表示可以处理在训练时间中看不到的实体,则"新实体"也可以接收到来源于本体的额外信息。

具体做法:

首先,本体信息或本体知识库(OKB),如概念和类,必须从一般知识库(KB)(一般存在于诸如Freebase之类的多个通用KG)中分离出来,如个体或实例。

其次,为OKB和知识库中的实体选择初始表示。使用word2vec的向量的平均值被用于实体中包含的每个词。

第三,用其对应的编码 本体信息的OKB向量扩展知识库中的每个实体向量

第四,使用诸如NTN或RESCAL等已知方法来学习KGE模型后用于KGC。

相关推荐
chao1898442 分钟前
MATLAB 实现声纹识别特征提取
人工智能·算法·matlab
zhishidi4 分钟前
推荐算法之:GBDT、GBDT LR、XGBoost详细解读与案例实现
人工智能·算法·推荐算法
yiersansiwu123d6 分钟前
AI伦理治理:在创新与规范之间寻找平衡
人工智能
weixin_537217066 分钟前
AI 智能体如何利用文件系统进行上下文工程
大数据·人工智能
胡乱编胡乱赢11 分钟前
Decaf攻击:联邦学习中的数据分布分解攻击
人工智能·深度学习·机器学习·联邦学习·decaf攻击
骥龙12 分钟前
5.14、AI安全运维体系:构建企业级的“安全超脑”
运维·人工智能·安全
阿里云大数据AI技术13 分钟前
PAI Physical AI Notebook详解(5):基于Isaac-Cortex的软件在环验证
人工智能
远上寒山14 分钟前
DINO 系列(v1/v2/v3)之二:DINOv2 原理的详细介绍
人工智能·深度学习·自监督·dinov2·自蒸馏·dino系列
_codemonster21 分钟前
深度学习实战(基于pytroch)系列(四十)长短期记忆(LSTM)从零开始实现
人工智能·深度学习·lstm
问知AI35 分钟前
InsightMatrix:问知AI的核心基座大模型
人工智能·科技·ai写作·内容运营