结合实体类型信息(2)——基于本体的知识图谱补全深度学习方法

1 引言

1.1 问题

目前KGC和KGE提案的两个主要缺点是:(1)它们没有利用本体信息;(二)对训练时未见的事实和新鲜事物不能预测的。

1.2 解决方案

一种新的知识图嵌入初始化方法。

1.3 结合的信息

知识库中的实体向量表示+编码后的本体信息------>增强 KGC

2基于本体的知识图谱补全深度学习方法

首先提出假设,如果使用嵌入来丰富e1的初始表示,则预测实体"Barack Obama"的链接(我们称之为e1)应该更容易,该嵌入试图反映e1是一位总统,因此也就是一位政治家。此外,如果"新鲜实体"的初始表示可以处理在训练时间中看不到的实体,则"新实体"也可以接收到来源于本体的额外信息。

具体做法:

首先,本体信息或本体知识库(OKB),如概念和类,必须从一般知识库(KB)(一般存在于诸如Freebase之类的多个通用KG)中分离出来,如个体或实例。

其次,为OKB和知识库中的实体选择初始表示。使用word2vec的向量的平均值被用于实体中包含的每个词。

第三,用其对应的编码 本体信息的OKB向量扩展知识库中的每个实体向量

第四,使用诸如NTN或RESCAL等已知方法来学习KGE模型后用于KGC。

相关推荐
渡我白衣1 分钟前
计算机组成原理(4):计算机的层次结构与工作原理
运维·c语言·网络·c++·人工智能·笔记·硬件架构
路边草随风4 分钟前
llama_index简单使用
人工智能·python·llama
zqy02275 分钟前
质量保障追求敏捷与快速交付
人工智能
瀚岳-诸葛弩5 分钟前
对比tensorflow,从0开始学pytorch(一)
人工智能·pytorch·tensorflow
宝贝儿好6 分钟前
【强化学习】第二章:老虎机问题、ε-greedy算法、指数移动平均
人工智能·python·算法
AI视觉网奇7 分钟前
实时 数字人 DH_live 半身
人工智能·计算机视觉
美狐美颜SDK开放平台7 分钟前
跨平台直播美颜SDK开发:iOS/Android/WebGL实现要点
android·人工智能·ios·美颜sdk·第三方美颜sdk·视频美颜sdk·美狐美颜sdk
2401_841495649 分钟前
【自然语言处理】自然语言理解的分层处理机制与程序语言编译器的对比研究
人工智能·python·深度学习·自然语言处理·自然语言理解·分层处理机制·程序语言编译器
泰迪智能科技11 分钟前
图书推荐|堪称教材天花板,深度学习教材-PyTorch与深度学习实战
人工智能·pytorch·深度学习
智算菩萨17 分钟前
计算机视觉技术驱动下的智能油藏建模与数据同化方法体系研究
人工智能·计算机视觉