结合实体类型信息(2)——基于本体的知识图谱补全深度学习方法

1 引言

1.1 问题

目前KGC和KGE提案的两个主要缺点是:(1)它们没有利用本体信息;(二)对训练时未见的事实和新鲜事物不能预测的。

1.2 解决方案

一种新的知识图嵌入初始化方法。

1.3 结合的信息

知识库中的实体向量表示+编码后的本体信息------>增强 KGC

2基于本体的知识图谱补全深度学习方法

首先提出假设,如果使用嵌入来丰富e1的初始表示,则预测实体"Barack Obama"的链接(我们称之为e1)应该更容易,该嵌入试图反映e1是一位总统,因此也就是一位政治家。此外,如果"新鲜实体"的初始表示可以处理在训练时间中看不到的实体,则"新实体"也可以接收到来源于本体的额外信息。

具体做法:

首先,本体信息或本体知识库(OKB),如概念和类,必须从一般知识库(KB)(一般存在于诸如Freebase之类的多个通用KG)中分离出来,如个体或实例。

其次,为OKB和知识库中的实体选择初始表示。使用word2vec的向量的平均值被用于实体中包含的每个词。

第三,用其对应的编码 本体信息的OKB向量扩展知识库中的每个实体向量

第四,使用诸如NTN或RESCAL等已知方法来学习KGE模型后用于KGC。

相关推荐
一休哥助手1 分钟前
2026年2月2日人工智能早间新闻
人工智能
爱吃泡芙的小白白5 分钟前
CNN的FLOPs:从理论计算到实战避坑指南
人工智能·神经网络·cnn·flops
山居秋暝LS7 分钟前
Padim模型参数
人工智能·机器学习
藦卡机器人14 分钟前
国产分拣机器人品牌有哪一些做的比较好的推荐?
人工智能
GJGCY17 分钟前
2026主流智能体平台技术路线差异,各大平台稳定性与集成能力对比
人工智能·经验分享·ai·智能体
橙露24 分钟前
视觉检测中的数字光纤放大器的核心参数和调整
人工智能·计算机视觉·视觉检测
Rorsion29 分钟前
机器学习过程(从机器学习到深度学习)
人工智能·深度学习·机器学习
JicasdC123asd29 分钟前
【工业检测】基于YOLO13-C3k2-EIEM的铸造缺陷检测与分类系统_1
人工智能·算法·分类
咚咚王者30 分钟前
人工智能之核心技术 深度学习 第十章 模型部署基础
人工智能·深度学习
ydl112830 分钟前
深度学习优化器详解:指数加权平均EWA、动量梯度下降Momentum、均方根传递RMSprop、Adam 从原理到实操
人工智能·深度学习