python 循环优化

python循环是非常耗时的,所以遇到比较大的数组就要对循环做优化,代码:

python 复制代码
                for i in range(pred_density_up.shape[0]):
                    for j in range(pred_density_up.shape[1]):
                        if pred_density_up[i][j] >= 0.1:
                            points.append([j , i ])

上面的循环是最长见的,但是计算速度比较慢。

那么如何优化呢?

要优化这段代码以提高执行速度,主要思路是减少循环的次数和避免在循环内部进行不必要的操作。在你的代码中,你正在遍历一个二维数组(可能是图像或矩阵的密度预测),并统计那些值大于或等于0.1的元素,同时记录这些元素的坐标。以下是一些优化方法:

方法 1: 使用 NumPy 的向量化操作

NumPy 的向量化操作可以大幅度提高性能,因为它是在 C 层面优化的,并且减少了 Python 循环的开销。

python 复制代码
import numpy as np

# 假设 pred_density_up 是一个 NumPy 数组
mask = pred_density_up >= 0.1
count = np.sum(mask)  # 计算满足条件的元素数量
points = np.argwhere(mask).tolist()  # 获取满足条件的元素的坐标

# 如果需要,可以调整坐标的顺序(假设原始数组是行优先的,但你想要列优先)
points = [[y, x] for x, y in points]

方法 2: 使用列表推导式(对于较小的数据集)

如果数据集不是特别大,列表推导式也可以提供较好的性能,并且代码更简洁。

python 复制代码
points = [[j, i] for i in range(pred_density_up.shape[0]) for j in range(pred_density_up.shape[1]) if pred_density_up[i][j] >= 0.1]
count = len(points)

方法 3: 使用 itertools.product 和 filter

对于想要更函数式编程风格的人来说,可以使用 itertools.product 来生成坐标,然后使用 filter 来筛选满足条件的坐标。

python 复制代码
from itertools import product

# 生成所有坐标
indices = product(range(pred_density_up.shape[0]), range(pred_density_up.shape[1]))
# 筛选满足条件的坐标
points = [[j, i] for i, j in indices if pred_density_up[i][j] >= 0.1]
count = len(points)

性能对比

在大多数情况下,方法 1(使用 NumPy 的向量化操作)将提供最佳的性能,因为它直接利用了 NumPy 的底层优化。对于大型数据集,这种差异尤其明显。

方法 2方法 3 在代码的可读性和简洁性方面有其优势,但在处理大型数据集时可能会较慢。

结论

推荐使用 方法 1 ,因为它既高效又易于理解和维护。如果你的数据集非常小,或者你对性能要求不是非常严格,那么 方法 2方法 3 也是可行的选择。

相关推荐
Rhys..14 分钟前
Python&Flask 使用 DBUtils 创建通用连接池
开发语言·python·mysql
Just_Paranoid16 分钟前
【Python Tkinter】图形用户界面(GUI)开发及打包EXE指南
python·gui·tkinter·pyinstaller
土了个豆子的25 分钟前
04.事件中心模块
开发语言·前端·visualstudio·单例模式·c#
小宁爱Python38 分钟前
Django 基础入门:命令、结构与核心配置全解析
后端·python·django
@菜菜_达1 小时前
Lodash方法总结
开发语言·前端·javascript
GISer_Jing1 小时前
低代码拖拽实现与bpmn-js详解
开发语言·javascript·低代码
@areok@1 小时前
C++mat传入C#OpencvCSharp的mat
开发语言·c++·opencv·c#
小王C语言2 小时前
【C++进阶】---- map和set的使用
开发语言·c++
闲人编程2 小时前
Flask 前后端分离架构实现支付宝电脑网站支付功能
python·架构·flask·支付宝·前后端·网站支付·apl
996终结者2 小时前
同类软件对比(四):Jupyter vs PyCharm vs VS Code:Python开发工具终极选择指南
vscode·python·jupyter·pycharm·visual studio code