昇思25天学习打卡营第24天|GAN图像生成

有时候用来训练AI模型的内容,不一定都需要人来产生,人产生一些图片以后,也可以让AI基于这些图片自己再继续生成一些图片,训练一个生成式对抗网络,然后用AI生成的图片来训练新的AI,以经典的MNIST手写体数字集合为例,在这个的基础上,让AI继续生成一些"手写体"数字。

实现中所搭建的 GAN 模型结构与原论文中提出的 GAN 结构大致相同,但由于所用数据集 MNIST 为单通道小尺寸图片,可识别参数少,便于训练,我们在判别器和生成器中采用全连接网络架构和 ReLU 激活函数即可达到令人满意的效果,且省略了原论文中用于减少参数的 Dropout 策略和可学习激活函数 Maxout

这个模型试用的时候框架报错了,所以没有后续的效果展示。可能是mindspore这个框架还在不断地迭代中,期间可能有一些API做了更改。

相关推荐
biter00881 小时前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
Code哈哈笑2 小时前
【Java 学习】深度剖析Java多态:从向上转型到向下转型,解锁动态绑定的奥秘,让代码更优雅灵活
java·开发语言·学习
QQ同步助手3 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
流浪的小新3 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
A懿轩A4 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
南宫生12 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
sanguine__12 小时前
Web APIs学习 (操作DOM BOM)
学习
数据的世界0114 小时前
.NET开发人员学习书籍推荐
学习·.net
四口鲸鱼爱吃盐14 小时前
CVPR2024 | 通过集成渐近正态分布学习实现强可迁移对抗攻击
学习
OopspoO17 小时前
qcow2镜像大小压缩
学习·性能优化