【python】OpenCV—Scanner

文章目录

1、需求描述

输入图片

扫描得到如下的结果

用OpenCV构建文档扫描仪只需三个简单步骤:

1.边缘检测

2.使用图像中的边缘来找到代表被扫描纸张的轮廓。

3.应用透视变换来获得文档的自顶向下视图。

2、代码实现

导入必要的包

python 复制代码
from skimage.filters import threshold_local
import numpy as np
import argparse
import cv2
import imutils

初始化一个坐标列表,该列表中的第一个元素是左上,第二个元素是右上,第三个元素是右下,第四个元素是左下

该坐标排序方法有缺陷,具体可参考 【python】OpenCV---Coordinates Sorted Clockwise

python 复制代码
def order_points(pts):
	rect = np.zeros((4, 2), dtype = "float32")
	# 左上角点的和最小,然而右下角的点的和最大
	s = pts.sum(axis = 1)
	rect[0] = pts[np.argmin(s)]
	rect[2] = pts[np.argmax(s)]
	# 现在,计算点之间的差值,右上角的差值最小,而左下角的差值最大
	diff = np.diff(pts, axis = 1)
	rect[1] = pts[np.argmin(diff)]
	rect[3] = pts[np.argmax(diff)]
	# 返回有序坐标
	return rect


def four_point_transform(image, pts):
	# 获得点的一致顺序,并将它们分别拆封
	rect = order_points(pts)
	(tl, tr, br, bl) = rect
	# 计算新图像的宽度,这将是右下角和左下角x坐标或右上角和左上角x坐标之间的最大距离
	widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
	widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
	maxWidth = max(int(widthA), int(widthB))
	# 计算新图像的高度,这将是右上角和右下角y坐标或左上角和左下角y坐标之间的最大距离
	heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
	heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
	maxHeight = max(int(heightA), int(heightB))
	# 现在我们有了新图像的维数,构建目标点集以获得图像的"鸟瞰视图"(即自顶向下视图),再次指定左上、右上、右下和左下顺序中的点
	dst = np.array([
		[0, 0],
		[maxWidth - 1, 0],
		[maxWidth - 1, maxHeight - 1],
		[0, maxHeight - 1]], dtype = "float32")
	# 计算透视变换矩阵,然后应用它
	M = cv2.getPerspectiveTransform(rect, dst)
	warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
	# 返回变换后的图像
	return warped

构造参数解析器并解析参数

python 复制代码
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True, default="1.jpg",
				help = "Path to the image to be scanned")
args = vars(ap.parse_args())


# 加载图像并计算旧高度与新高度的比率,克隆它,并调整它的大小
image = cv2.imread(args["image"])


ratio = image.shape[0] / 500.0
orig = image.copy()
image = imutils.resize(image, height=500)

# ratio = 1.0
# orig = image.copy()


# 将图像转换为灰度,模糊它,并在图像中找到边缘
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imwrite("gray.jpg", gray)
python 复制代码
gray = cv2.GaussianBlur(gray, (7, 7), 0)
cv2.imwrite("GaussianBlur.jpg", gray)

这里 kernel size 需要设置大一些,不然很容易检测到发票上的黑色字体为轮廓了

python 复制代码
edged = cv2.Canny(gray, 75, 200)
cv2.imwrite("Canny.jpg", edged)

显示原始图像和边缘检测图像

python 复制代码
print("STEP 1: Edge Detection")
cv2.imshow("Image", image)
cv2.imshow("Edged", edged)
cv2.waitKey(0)

找到边缘图像中的轮廓,只保留最大的轮廓,并初始化屏幕轮廓

python 复制代码
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]
# 循环迭代所有轮廓
for c in cnts:
	# 近似轮廓
	peri = cv2.arcLength(c, True)
	approx = cv2.approxPolyDP(c, 0.02 * peri, True)
	# cv2.drawContours(image, c, -1, (0, 0, 255), 3)
	# 如果我们的近似轮廓有4个点,那么我们可以假设我们已经找到了我们的屏幕
	if len(approx) == 4:
		screenCnt = approx
		break

# 画出这张票的轮廓
print("STEP 2: Find contours of paper")
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
cv2.imshow("Outline", image)
cv2.waitKey(0)
python 复制代码
# 应用四点变换获得原始图像自上而下的视图
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
cv2.imwrite("warped.jpg", warped)
python 复制代码
# 将变换后的图像转换为灰度,然后使用阈值给它"黑白"纸的效果
warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
cv2.imwrite("warped_gray.jpg", warped)
python 复制代码
T = threshold_local(warped, 11, offset = 10, method = "gaussian")
warped = (warped > T).astype("uint8") * 255
cv2.imwrite("warped_threshold_local.jpg", warped)
python 复制代码
# 显示原始和扫描图像
print("STEP 3: Apply perspective transform")
cv2.imshow("Original", imutils.resize(orig, height = 650))
cv2.imshow("Scanned", imutils.resize(warped, height = 650))
cv2.waitKey(0)

再来个例子

输入图片

输出结果

3、涉及到的库函数

cv2.arcLength

cv2.arcLength 是 OpenCV(Open Source Computer Vision Library)库中的一个函数,用于计算多边形的周长或轮廓的弧长。这个函数在处理图像中的形状分析、轮廓检测等任务时非常有用。它接受一个轮廓(轮廓是一系列的点,通常通过边缘检测或轮廓查找算法获得)作为输入,并返回该轮廓的周长。

python 复制代码
length = cv2.arcLength(contour, True)
  • contour:输入轮廓,应该是一个点集(通常是numpy.ndarray类型),这些点定义了轮廓的形状。

  • 第二个参数是True或False,指定轮廓是否应该被近似为闭合的(通过连接轮廓的第一个点和最后一个点)。如果轮廓已经是闭合的,或者你不关心轮廓是否闭合,可以传递True。如果轮廓不是闭合的,但你不希望它被视为闭合的,应该传递False。注意,这个参数在一些版本的OpenCV中可能不是必需的,或者默认值为True。

返回值

  • length:返回轮廓的周长或弧长,类型为浮点数。

cv2.approxPolyDP

cv2.approxPolyDP 是 OpenCV 库中的一个函数,用于对轮廓或曲线进行多边形逼近。该函数使用 Douglas-Peucker 算法来减少表示轮廓或曲线所需的点数,同时尽可能保持其形状特征。这个功能在图像处理、计算机视觉和机器学习等领域中非常有用,特别是在处理轮廓检测、形状分析等方面。

python 复制代码
approx = cv2.approxPolyDP(curve, epsilon, closed)
  • curve:要逼近的曲线或轮廓,可以是二维点的列表或 NumPy 数组。
  • epsilon:逼近精度。这是一个距离值,表示原始曲线上的点与逼近后的多边形之间的最大距离。epsilon 的值越小,逼近结果越精确,但所需的点数也可能越多。
  • closed:一个布尔值,指定逼近后的多边形是否闭合。如果为 True,则逼近后的多边形是闭合的;如果为 False,则逼近结果可能不是闭合的。

返回值

  • approx:逼近后的多边形,以二维点的列表或 NumPy 数组的形式返回。

需要注意的是,epsilon 的值是一个权衡参数,需要根据具体应用进行调整。较小的 epsilon 值会产生更精确的逼近结果,但可能会增加计算复杂性和所需的存储空间。较大的 epsilon 值则会产生更简单的逼近结果,但可能会损失一些形状细节。因此,在实际应用中,需要根据具体需求来选择合适的 epsilon 值。

skimage.filters.threshold_local

skimage.filters.threshold_local 是 scikit-image 库中的一个函数,用于对图像进行局部阈值处理。与全局阈值处理(如使用固定的阈值来分割图像)不同,局部阈值处理会考虑图像中的每个像素及其邻域,从而根据局部区域的统计特性(如亮度或对比度)动态地确定阈值。这种方法在处理光照不均或具有不同亮度水平的图像时特别有用。

python 复制代码
skimage.filters.threshold_local(image, block_size, method='gaussian', offset=0, mode='reflect', param=None, cval=0, **kwargs)

参数说明

  • image:输入图像,通常是灰度图像。
  • block_size:用于计算局部阈值的邻域大小(以像素为单位)。较大的块大小会增加计算成本,但可能会更好地适应图像中的光照变化。
  • method:确定如何计算局部阈值的方法。'gaussian'(默认)使用高斯加权窗口,'mean'使用简单的平均值,'median'使用中位数。
  • offset:从计算出的局部阈值中减去的值。这可以用来调整最终的阈值水平。
  • mode:用于填充图像边界之外的值的方法。这可以是 'constant'、'nearest'、'reflect' 或 'wrap' 中的一个。
  • param:某些方法(如'gaussian')可能接受额外的参数。对于 'gaussian' 方法,param 可以是标准差(sigma),但在 threshold_local 函数中,这通常不是必需的,因为高斯权重是通过 block_size 隐式确定的。
  • cval:当 mode='constant' 时,用于填充图像边界之外的值的常量值。
  • **kwargs:传递给 method 函数的额外关键字参数(如果有的话)。

返回值

  • 返回一个浮点数,表示计算出的局部阈值,或者一个与输入图像形状相同的数组,其中包含了每个像素的局部阈值(如果 method='multi')。然而,注意 threshold_local 默认并不直接返回这样的数组;它返回的是一个单一的阈值,用于后续操作(如 threshold_local 通常会与 apply_threshold 或类似的函数结合使用来分割图像)。

imutils.grab_contours

imutils.grab_contours 是 imutils 库中的一个函数,该库是一个为OpenCV提供便利函数的Python库,旨在简化图像处理任务。在OpenCV中,特别是在使用cv2.findContours函数时,返回的轮廓信息可能会根据OpenCV的版本(主要是3.x和4.x版本之间)而有所不同。在OpenCV 3.x中,cv2.findContours返回三个值:图像、轮廓、和轮廓的层次结构。而在OpenCV 4.x中,它只返回两个值:轮廓和轮廓的层次结构。

imutils.grab_contours函数就是为了解决这种版本差异而设计的。它接受cv2.findContours的输出,并始终返回轮廓列表,无论OpenCV的版本如何。这样,开发者就可以编写不依赖于特定OpenCV版本的代码。

假设你正在使用OpenCV来检测图像中的轮廓,你可能会写出如下代码:

python 复制代码
import cv2  
import imutils  
  
# 读取图像  
image = cv2.imread('path_to_image.jpg')  
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  
blurred = cv2.GaussianBlur(gray, (5, 5), 0)  
edged = cv2.Canny(blurred, 30, 150)  
  
# 在OpenCV 4.x中,cv2.findContours返回两个值  
contours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  
  
# 使用imutils.grab_contours来获取轮廓  
contours = imutils.grab_contours(contours)  
  
# 现在,无论你的OpenCV版本是什么,contours都是一个轮廓列表  
# 接下来,你可以使用这些轮廓进行进一步的处理,比如绘制轮廓等  
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)  
  
# 显示图像  
cv2.imshow("Image", image)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

请注意,如果你正在使用OpenCV 3.x,cv2.findContours实际上会返回三个值,但imutils.grab_contours函数会忽略第一个返回值(通常是原始图像,但在这个上下文中并不重要),并只返回轮廓列表。这使得你的代码更加健壮,因为它不依赖于OpenCV的特定版本。

4、完整代码

python 复制代码
# 导入必要的包
from skimage.filters import threshold_local
import numpy as np
import argparse
import cv2
import imutils

def order_points(pts):
	# 初始化一个坐标列表,该列表中的第一个元素是左上,第二个元素是右上,第三个元素是右下,第四个元素是左下
	rect = np.zeros((4, 2), dtype = "float32")
	# 左上角点的和最小,然而右下角的点的和最大
	s = pts.sum(axis = 1)
	rect[0] = pts[np.argmin(s)]
	rect[2] = pts[np.argmax(s)]
	# 现在,计算点之间的差值,右上角的差值最小,而左下角的差值最大
	diff = np.diff(pts, axis = 1)
	rect[1] = pts[np.argmin(diff)]
	rect[3] = pts[np.argmax(diff)]
	# 返回有序坐标
	return rect


def four_point_transform(image, pts):
	# 获得点的一致顺序,并将它们分别拆封
	rect = order_points(pts)
	(tl, tr, br, bl) = rect
	# 计算新图像的宽度,这将是右下角和左下角x坐标或右上角和左上角x坐标之间的最大距离
	widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
	widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
	maxWidth = max(int(widthA), int(widthB))
	# 计算新图像的高度,这将是右上角和右下角y坐标或左上角和左下角y坐标之间的最大距离
	heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
	heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
	maxHeight = max(int(heightA), int(heightB))
	# 现在我们有了新图像的维数,构建目标点集以获得图像的"鸟瞰视图"(即自顶向下视图),再次指定左上、右上、右下和左下顺序中的点
	dst = np.array([
		[0, 0],
		[maxWidth - 1, 0],
		[maxWidth - 1, maxHeight - 1],
		[0, maxHeight - 1]], dtype = "float32")
	# 计算透视变换矩阵,然后应用它
	M = cv2.getPerspectiveTransform(rect, dst)
	warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
	# 返回变换后的图像
	return warped


# 构造参数解析器并解析参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True, default="1.jpg",
				help = "Path to the image to be scanned")
args = vars(ap.parse_args())


# 加载图像并计算旧高度与新高度的比率,克隆它,并调整它的大小
image = cv2.imread(args["image"])


ratio = image.shape[0] / 500.0
orig = image.copy()
image = imutils.resize(image, height=500)

# ratio = 1.0
# orig = image.copy()


# 将图像转换为灰度,模糊它,并在图像中找到边缘
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imwrite("gray.jpg", gray)

gray = cv2.GaussianBlur(gray, (7, 7), 0)
cv2.imwrite("GaussianBlur.jpg", gray)

edged = cv2.Canny(gray, 75, 200)
cv2.imwrite("Canny.jpg", edged)

# 显示原始图像和边缘检测图像
print("STEP 1: Edge Detection")
cv2.imshow("Image", image)
cv2.imshow("Edged", edged)
cv2.waitKey(0)

# 找到边缘图像中的轮廓,只保留最大的轮廓,并初始化屏幕轮廓
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]
# 循环迭代所有轮廓
for c in cnts:
	# 近似轮廓
	peri = cv2.arcLength(c, True)
	approx = cv2.approxPolyDP(c, 0.02 * peri, True)
	# cv2.drawContours(image, c, -1, (0, 0, 255), 3)
	# 如果我们的近似轮廓有4个点,那么我们可以假设我们已经找到了我们的屏幕
	if len(approx) == 4:
		screenCnt = approx
		break

# 画出这张票的轮廓
print("STEP 2: Find contours of paper")
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
cv2.imshow("Outline", image)
cv2.waitKey(0)

# 应用四点变换获得原始图像自上而下的视图
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
cv2.imwrite("warped.jpg", warped)

# 将变换后的图像转换为灰度,然后使用阈值给它"黑白"纸的效果
warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
cv2.imwrite("warped_gray.jpg", warped)


T = threshold_local(warped, 11, offset = 10, method = "gaussian")
warped = (warped > T).astype("uint8") * 255
cv2.imwrite("warped_threshold_local.jpg", warped)

# 显示原始和扫描图像
print("STEP 3: Apply perspective transform")
cv2.imshow("Original", imutils.resize(orig, height = 650))
cv2.imshow("Scanned", imutils.resize(warped, height = 650))
cv2.waitKey(0)

5、参考

参考学习来自 imutils基础(4)构建一个文档扫描仪

相关推荐
通信.萌新1 小时前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu1 小时前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis2 小时前
如何在 Flask 中实现用户认证?
后端·python·flask
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
水银嘻嘻2 小时前
【Mac】Python相关知识经验
开发语言·python·macos
汤姆和佩琦2 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
我的运维人生3 小时前
Java并发编程深度解析:从理论到实践
java·开发语言·python·运维开发·技术共享
lljss20203 小时前
python创建一个httpServer网页上传文件到httpServer
开发语言·python