python处理彩色图像通道拆分与合并

彩色图像通道拆分与合并

  • [1. 使用 opencv](#1. 使用 opencv)

  • [2. 使用 numpy](#2. 使用 numpy)

  • 待处理图像 ML.jpg

1. 使用 opencv

python 复制代码
import cv2
import matplotlib.pyplot as plt
import numpy as np
# 读取图像
# 读取图像
image = cv2.imread('ML.jpg')
plt.imshow(image)
print(type(image))  # 输出:<class 'numpy.ndarray'>
print(image.shape)  # 输出:(152, 150, 3)
b,g,r = cv2.split(image)
print(b.shape,g.shape,r.shape) # 输出:(152, 150) (152, 150) (152, 150)
# 使用matplotlib显示拆分后的通道
plt.figure(figsize=(12, 4))
plt.subplot(1,3,1),plt.imshow(b,cmap='gray'),plt.title('Blue Channel')
plt.subplot(1,3,2),plt.imshow(g,cmap='gray'),plt.title('Green Channel')
plt.subplot(1,3,3),plt.imshow(r,cmap='gray'),plt.title('Red Channel')
plt.show()
python 复制代码
# 保存图像
# 保存图像
cv2.imwrite('ML_cv_B.jpg',b)
cv2.imwrite('ML_cv_G.jpg',g)
cv2.imwrite('ML_cv_R.jpg',r)
print(b.shape,g.shape,r.shape)  # 输出:(152, 150) (152, 150) (152, 150)

# 在把三张单通道图像读取进来,需要设定IMREAD_GRAYSCALE,保证以单通道读取
image_b = cv2.imread('ML_cv_B.jpg',cv2.IMREAD_GRAYSCALE)
image_g = cv2.imread('ML_cv_G.jpg',cv2.IMREAD_GRAYSCALE)
image_r = cv2.imread('ML_cv_R.jpg',cv2.IMREAD_GRAYSCALE)

# 把三个单通道图像合成一个三通道图像,也就是把3个 二维矩阵堆叠成一个三维矩阵的过程 
image_bgr = cv2.merge([image_b,image_g,image_r])
# 显示合成后的图像
print(image_bgr.shape)  # 输出:(152, 150, 3)
plt.imshow(image_bgr)

2. 使用 numpy

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

# 读取图像
image = Image.open('ML.jpg')
print(image)  # 输出:<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=150x152 at 0x1D0ED6F2850>
# 转张量
arr = np.array(image)
print(arr.shape)  # 输出:(152, 150, 3)
# 切分
r,g,b = arr[:,:,0],arr[:,:,2],arr[:,:,2]
print(r.shape,g.shape,b.shape)  #输出:(152, 150) (152, 150) (152, 150)
plt.imshow(arr)

plt.subplot(131),plt.imshow(r,cmap='gray')
plt.subplot(132),plt.imshow(g,cmap='gray')
plt.subplot(133),plt.imshow(b,cmap='gray')
python 复制代码
在这里插入代码片# 将NumPy数组转换为Pillow图像  
img_r = Image.fromarray(r)  
img_g = Image.fromarray(g)  
img_b = Image.fromarray(b)  
print(img_r)  # 输出:<PIL.Image.Image image mode=L size=150x152 at 0x1D0EB524C90>
# 保存
img_r.save('ML_PIL_R.jpg')
img_g.save('ML_PIL_G.jpg')
img_b.save('ML_PIL_B.jpg')

# 再读取单通道图像
image_r = Image.open('ML_PIL_R.jpg')
image_g = Image.open('ML_PIL_G.jpg')
image_b = Image.open('ML_PIL_B.jpg')
print(image_r)  # 输出:<PIL.JpegImagePlugin.JpegImageFile image mode=L size=150x152 at 0x1D0F166FDD0>
# 转张量
R,G,B = np.array(image_r),np.array(image_g),np.array(image_b)

print(R.shape,G.shape,B.shape) # 输出:(152, 150) (152, 150) (152, 150)
# 数组堆叠,升维,变成多通道图像
RGB_Image = np.stack([R,G,B],2)
print(RGB_Image.shape)  # 输出:(152, 150, 3)
# 显示图像
plt.imshow(RGB_Image)
  • 这里有个问题,重新堆叠的图像彩色没有那么鲜艳了
相关推荐
Zz_waiting.20 小时前
统一服务入口-Gateway
java·开发语言·gateway
ada7_20 小时前
LeetCode(python)——49.字母异位词分组
java·python·leetcode
我的xiaodoujiao20 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 23--数据驱动--参数化处理 Yaml 文件
python·学习·测试工具·pytest
晨尘光20 小时前
【pycharm 创建一个线程,在线程函数中增加的日志打印,日志打印了,但是打断点进不去】
ide·python·pycharm
四维碎片20 小时前
【Qt】大数据量表格刷新优化--只刷新可见区域
开发语言·qt
薛慕昭21 小时前
C语言核心技术深度解析:从内存管理到算法实现
c语言·开发语言·算法
databook21 小时前
manim边做边学--文字创建销毁的打字机效果
后端·python·动效
火星数据-Tina21 小时前
Python + WebSocket 实现实时体育比分系统(含数据库设计与前端演示)
开发语言·前端
小艳加油21 小时前
AI+Python近红外光谱分析机器学习与深度学习实战,覆盖提示词撰写、数据预处理、回归/神经网络/集成学习/迁移学习/可解释性可视化等
python·近红外光谱分析·多元线性回归
⑩-21 小时前
浅学Java-设计模式
java·开发语言·设计模式