python处理彩色图像通道拆分与合并

彩色图像通道拆分与合并

  • [1. 使用 opencv](#1. 使用 opencv)

  • [2. 使用 numpy](#2. 使用 numpy)

  • 待处理图像 ML.jpg

1. 使用 opencv

python 复制代码
import cv2
import matplotlib.pyplot as plt
import numpy as np
# 读取图像
# 读取图像
image = cv2.imread('ML.jpg')
plt.imshow(image)
print(type(image))  # 输出:<class 'numpy.ndarray'>
print(image.shape)  # 输出:(152, 150, 3)
b,g,r = cv2.split(image)
print(b.shape,g.shape,r.shape) # 输出:(152, 150) (152, 150) (152, 150)
# 使用matplotlib显示拆分后的通道
plt.figure(figsize=(12, 4))
plt.subplot(1,3,1),plt.imshow(b,cmap='gray'),plt.title('Blue Channel')
plt.subplot(1,3,2),plt.imshow(g,cmap='gray'),plt.title('Green Channel')
plt.subplot(1,3,3),plt.imshow(r,cmap='gray'),plt.title('Red Channel')
plt.show()
python 复制代码
# 保存图像
# 保存图像
cv2.imwrite('ML_cv_B.jpg',b)
cv2.imwrite('ML_cv_G.jpg',g)
cv2.imwrite('ML_cv_R.jpg',r)
print(b.shape,g.shape,r.shape)  # 输出:(152, 150) (152, 150) (152, 150)

# 在把三张单通道图像读取进来,需要设定IMREAD_GRAYSCALE,保证以单通道读取
image_b = cv2.imread('ML_cv_B.jpg',cv2.IMREAD_GRAYSCALE)
image_g = cv2.imread('ML_cv_G.jpg',cv2.IMREAD_GRAYSCALE)
image_r = cv2.imread('ML_cv_R.jpg',cv2.IMREAD_GRAYSCALE)

# 把三个单通道图像合成一个三通道图像,也就是把3个 二维矩阵堆叠成一个三维矩阵的过程 
image_bgr = cv2.merge([image_b,image_g,image_r])
# 显示合成后的图像
print(image_bgr.shape)  # 输出:(152, 150, 3)
plt.imshow(image_bgr)

2. 使用 numpy

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

# 读取图像
image = Image.open('ML.jpg')
print(image)  # 输出:<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=150x152 at 0x1D0ED6F2850>
# 转张量
arr = np.array(image)
print(arr.shape)  # 输出:(152, 150, 3)
# 切分
r,g,b = arr[:,:,0],arr[:,:,2],arr[:,:,2]
print(r.shape,g.shape,b.shape)  #输出:(152, 150) (152, 150) (152, 150)
plt.imshow(arr)

plt.subplot(131),plt.imshow(r,cmap='gray')
plt.subplot(132),plt.imshow(g,cmap='gray')
plt.subplot(133),plt.imshow(b,cmap='gray')
python 复制代码
在这里插入代码片# 将NumPy数组转换为Pillow图像  
img_r = Image.fromarray(r)  
img_g = Image.fromarray(g)  
img_b = Image.fromarray(b)  
print(img_r)  # 输出:<PIL.Image.Image image mode=L size=150x152 at 0x1D0EB524C90>
# 保存
img_r.save('ML_PIL_R.jpg')
img_g.save('ML_PIL_G.jpg')
img_b.save('ML_PIL_B.jpg')

# 再读取单通道图像
image_r = Image.open('ML_PIL_R.jpg')
image_g = Image.open('ML_PIL_G.jpg')
image_b = Image.open('ML_PIL_B.jpg')
print(image_r)  # 输出:<PIL.JpegImagePlugin.JpegImageFile image mode=L size=150x152 at 0x1D0F166FDD0>
# 转张量
R,G,B = np.array(image_r),np.array(image_g),np.array(image_b)

print(R.shape,G.shape,B.shape) # 输出:(152, 150) (152, 150) (152, 150)
# 数组堆叠,升维,变成多通道图像
RGB_Image = np.stack([R,G,B],2)
print(RGB_Image.shape)  # 输出:(152, 150, 3)
# 显示图像
plt.imshow(RGB_Image)
  • 这里有个问题,重新堆叠的图像彩色没有那么鲜艳了
相关推荐
烛阴4 分钟前
用 Python 揭秘 IP 地址背后的地理位置和信息
前端·python
大宝剑1707 分钟前
python环境安装
开发语言·python
lly20240620 分钟前
CSS3 多媒体查询
开发语言
Element_南笙24 分钟前
吴恩达新课程:Agentic AI(笔记2)
数据库·人工智能·笔记·python·深度学习·ui·自然语言处理
倔强青铜三33 分钟前
苦练Python第69天:subprocess模块从入门到上瘾,手把手教你驯服系统命令!
人工智能·python·面试
倔强青铜三38 分钟前
苦练 Python 第 68 天:并发狂飙!concurrent 模块让你 CPU 原地起飞
人工智能·python·面试
星期天要睡觉1 小时前
深度学习——循环神经网络(RNN)实战项目:基于PyTorch的文本情感分析
人工智能·python·rnn·深度学习·神经网络
天***88961 小时前
js封装一个双精度算法实现
开发语言·前端·javascript
.小小陈.1 小时前
数据结构2:单链表
c语言·开发语言·数据结构·笔记·学习方法
ERROR_LESS2 小时前
【ADS-1】【python基础-2】基本语法与数据结构(列表、字典、集合)
python