python处理彩色图像通道拆分与合并

彩色图像通道拆分与合并

  • [1. 使用 opencv](#1. 使用 opencv)

  • [2. 使用 numpy](#2. 使用 numpy)

  • 待处理图像 ML.jpg

1. 使用 opencv

python 复制代码
import cv2
import matplotlib.pyplot as plt
import numpy as np
# 读取图像
# 读取图像
image = cv2.imread('ML.jpg')
plt.imshow(image)
print(type(image))  # 输出:<class 'numpy.ndarray'>
print(image.shape)  # 输出:(152, 150, 3)
b,g,r = cv2.split(image)
print(b.shape,g.shape,r.shape) # 输出:(152, 150) (152, 150) (152, 150)
# 使用matplotlib显示拆分后的通道
plt.figure(figsize=(12, 4))
plt.subplot(1,3,1),plt.imshow(b,cmap='gray'),plt.title('Blue Channel')
plt.subplot(1,3,2),plt.imshow(g,cmap='gray'),plt.title('Green Channel')
plt.subplot(1,3,3),plt.imshow(r,cmap='gray'),plt.title('Red Channel')
plt.show()
python 复制代码
# 保存图像
# 保存图像
cv2.imwrite('ML_cv_B.jpg',b)
cv2.imwrite('ML_cv_G.jpg',g)
cv2.imwrite('ML_cv_R.jpg',r)
print(b.shape,g.shape,r.shape)  # 输出:(152, 150) (152, 150) (152, 150)

# 在把三张单通道图像读取进来,需要设定IMREAD_GRAYSCALE,保证以单通道读取
image_b = cv2.imread('ML_cv_B.jpg',cv2.IMREAD_GRAYSCALE)
image_g = cv2.imread('ML_cv_G.jpg',cv2.IMREAD_GRAYSCALE)
image_r = cv2.imread('ML_cv_R.jpg',cv2.IMREAD_GRAYSCALE)

# 把三个单通道图像合成一个三通道图像,也就是把3个 二维矩阵堆叠成一个三维矩阵的过程 
image_bgr = cv2.merge([image_b,image_g,image_r])
# 显示合成后的图像
print(image_bgr.shape)  # 输出:(152, 150, 3)
plt.imshow(image_bgr)

2. 使用 numpy

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

# 读取图像
image = Image.open('ML.jpg')
print(image)  # 输出:<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=150x152 at 0x1D0ED6F2850>
# 转张量
arr = np.array(image)
print(arr.shape)  # 输出:(152, 150, 3)
# 切分
r,g,b = arr[:,:,0],arr[:,:,2],arr[:,:,2]
print(r.shape,g.shape,b.shape)  #输出:(152, 150) (152, 150) (152, 150)
plt.imshow(arr)

plt.subplot(131),plt.imshow(r,cmap='gray')
plt.subplot(132),plt.imshow(g,cmap='gray')
plt.subplot(133),plt.imshow(b,cmap='gray')
python 复制代码
在这里插入代码片# 将NumPy数组转换为Pillow图像  
img_r = Image.fromarray(r)  
img_g = Image.fromarray(g)  
img_b = Image.fromarray(b)  
print(img_r)  # 输出:<PIL.Image.Image image mode=L size=150x152 at 0x1D0EB524C90>
# 保存
img_r.save('ML_PIL_R.jpg')
img_g.save('ML_PIL_G.jpg')
img_b.save('ML_PIL_B.jpg')

# 再读取单通道图像
image_r = Image.open('ML_PIL_R.jpg')
image_g = Image.open('ML_PIL_G.jpg')
image_b = Image.open('ML_PIL_B.jpg')
print(image_r)  # 输出:<PIL.JpegImagePlugin.JpegImageFile image mode=L size=150x152 at 0x1D0F166FDD0>
# 转张量
R,G,B = np.array(image_r),np.array(image_g),np.array(image_b)

print(R.shape,G.shape,B.shape) # 输出:(152, 150) (152, 150) (152, 150)
# 数组堆叠,升维,变成多通道图像
RGB_Image = np.stack([R,G,B],2)
print(RGB_Image.shape)  # 输出:(152, 150, 3)
# 显示图像
plt.imshow(RGB_Image)
  • 这里有个问题,重新堆叠的图像彩色没有那么鲜艳了
相关推荐
阿珊和她的猫3 小时前
v-scale-scree: 根据屏幕尺寸缩放内容
开发语言·前端·javascript
fouryears_234175 小时前
Flutter InheritedWidget 详解:从生命周期到数据流动的完整解析
开发语言·flutter·客户端·dart
我好喜欢你~6 小时前
C#---StopWatch类
开发语言·c#
lifallen7 小时前
Java Stream sort算子实现:SortedOps
java·开发语言
IT毕设实战小研7 小时前
基于Spring Boot 4s店车辆管理系统 租车管理系统 停车位管理系统 智慧车辆管理系统
java·开发语言·spring boot·后端·spring·毕业设计·课程设计
wyiyiyi7 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
mit6.8248 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
没有bug.的程序员8 小时前
JVM 总览与运行原理:深入Java虚拟机的核心引擎
java·jvm·python·虚拟机
甄超锋8 小时前
Java ArrayList的介绍及用法
java·windows·spring boot·python·spring·spring cloud·tomcat
cui__OaO8 小时前
Linux软件编程--线程
linux·开发语言·线程·互斥锁·死锁·信号量·嵌入式学习