计算机视觉8 图像增广

图像增广(image augmentation)是通过对训练图像进行一系列随机改变,从而产生相似但又不同的训练样本的技术。

图像增广有以下两个主要作用:

  1. 扩大训练数据集的规模;
  2. 随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。

例如,通过不同方式裁剪图像,使感兴趣的物体出现在不同位置,可以减轻模型对物体出现位置的依赖性;调整亮度、色彩等因素能降低模型对色彩的敏感度。

一些常见的图像增广方法包括:

  1. 翻转 :如左右翻转(通过torchvision.transforms.RandomHorizontalFliptf.image.random_flip_left_right实现)和上下翻转(通过torchvision.transforms.RandomVerticalFliptf.image.random_flip_up_down实现),通常不会改变对象的类别。
  2. 随机裁剪 :随机裁剪一个面积为原始面积一定比例(如10%到100%)的区域,该区域的宽高比也在一定范围内随机取值(如0.5到2),然后将该区域的宽度和高度缩放到指定像素(如200像素)。例如,使用torchvision.transforms.RandomResizedCroptf.image.random_crop
  3. 亮度变化 :将图像的亮度随机调整为原图亮度的一定比例范围(如50%到150%),可通过torchvision.transforms.ColorJitter中的brightness参数或tf.image.random_brightness实现。
  4. 色调变化 :随机更改图像的色调,如使用torchvision.transforms.ColorJitter中的hue参数或tf.image.random_hue
  5. 颜色变化 :还可以同时随机更改图像的亮度、对比度、饱和度和色调,创建torchvision.transforms.ColorJitter实例并设置相应参数即可。
  6. 组合多种方法 :可以使用torchvision.transforms.Compose将多个图像增广方法组合起来应用到图像上。

在实践中,通常仅在训练样本上进行图像增广,而在预测过程中不使用随机操作的图像增广,以获得确切的结果。

相关推荐
搞笑的秀儿30 分钟前
信息新技术
大数据·人工智能·物联网·云计算·区块链
阿里云大数据AI技术1 小时前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
XMAIPC_Robot1 小时前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
加油吧zkf1 小时前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
Blossom.1182 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
天天扭码2 小时前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试
难受啊马飞2.02 小时前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队2 小时前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享2 小时前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
烟锁池塘柳02 小时前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习