计算机视觉8 图像增广

图像增广(image augmentation)是通过对训练图像进行一系列随机改变,从而产生相似但又不同的训练样本的技术。

图像增广有以下两个主要作用:

  1. 扩大训练数据集的规模;
  2. 随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。

例如,通过不同方式裁剪图像,使感兴趣的物体出现在不同位置,可以减轻模型对物体出现位置的依赖性;调整亮度、色彩等因素能降低模型对色彩的敏感度。

一些常见的图像增广方法包括:

  1. 翻转 :如左右翻转(通过torchvision.transforms.RandomHorizontalFliptf.image.random_flip_left_right实现)和上下翻转(通过torchvision.transforms.RandomVerticalFliptf.image.random_flip_up_down实现),通常不会改变对象的类别。
  2. 随机裁剪 :随机裁剪一个面积为原始面积一定比例(如10%到100%)的区域,该区域的宽高比也在一定范围内随机取值(如0.5到2),然后将该区域的宽度和高度缩放到指定像素(如200像素)。例如,使用torchvision.transforms.RandomResizedCroptf.image.random_crop
  3. 亮度变化 :将图像的亮度随机调整为原图亮度的一定比例范围(如50%到150%),可通过torchvision.transforms.ColorJitter中的brightness参数或tf.image.random_brightness实现。
  4. 色调变化 :随机更改图像的色调,如使用torchvision.transforms.ColorJitter中的hue参数或tf.image.random_hue
  5. 颜色变化 :还可以同时随机更改图像的亮度、对比度、饱和度和色调,创建torchvision.transforms.ColorJitter实例并设置相应参数即可。
  6. 组合多种方法 :可以使用torchvision.transforms.Compose将多个图像增广方法组合起来应用到图像上。

在实践中,通常仅在训练样本上进行图像增广,而在预测过程中不使用随机操作的图像增广,以获得确切的结果。

相关推荐
路溪非溪2 分钟前
AI系列:智能音箱技术简析
人工智能·智能音箱
追逐☞8 分钟前
机器学习(13)——LGBM(2)
人工智能·机器学习
白熊18814 分钟前
【计算机视觉】论文精读《基于改进YOLOv3的火灾检测与识别》
人工智能·yolo·计算机视觉
鸢想睡觉23 分钟前
【OpenCV基础 1】几何变换、形态学处理、阈值分割、区域提取和脱敏处理
图像处理·人工智能
有Li32 分钟前
联合建模组织学和分子标记用于癌症分类|文献速递-深度学习医疗AI最新文献
人工智能·深度学习·分类
乌旭43 分钟前
开源GPU架构RISC-V VCIX的深度学习潜力测试:从RTL仿真到MNIST实战
人工智能·深度学习·stable diffusion·架构·aigc·midjourney·risc-v
qq_416276421 小时前
SuperYOLO:多模态遥感图像中的超分辨率辅助目标检测之论文阅读
论文阅读·人工智能·目标检测
RuizhiHe1 小时前
从零开始实现大语言模型(十六):加载开源大语言模型参数
人工智能·chatgpt·llm·大语言模型·deepseek·从零开始实现大语言模型
asdfg12589631 小时前
深度估计中为什么需要已知相机基线(known camera baseline)?
人工智能·计算机视觉
LeeZhao@1 小时前
【AGI】大模型微调数据集准备
人工智能·数据挖掘·aigc·agi