计算机视觉8 图像增广

图像增广(image augmentation)是通过对训练图像进行一系列随机改变,从而产生相似但又不同的训练样本的技术。

图像增广有以下两个主要作用:

  1. 扩大训练数据集的规模;
  2. 随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。

例如,通过不同方式裁剪图像,使感兴趣的物体出现在不同位置,可以减轻模型对物体出现位置的依赖性;调整亮度、色彩等因素能降低模型对色彩的敏感度。

一些常见的图像增广方法包括:

  1. 翻转 :如左右翻转(通过torchvision.transforms.RandomHorizontalFliptf.image.random_flip_left_right实现)和上下翻转(通过torchvision.transforms.RandomVerticalFliptf.image.random_flip_up_down实现),通常不会改变对象的类别。
  2. 随机裁剪 :随机裁剪一个面积为原始面积一定比例(如10%到100%)的区域,该区域的宽高比也在一定范围内随机取值(如0.5到2),然后将该区域的宽度和高度缩放到指定像素(如200像素)。例如,使用torchvision.transforms.RandomResizedCroptf.image.random_crop
  3. 亮度变化 :将图像的亮度随机调整为原图亮度的一定比例范围(如50%到150%),可通过torchvision.transforms.ColorJitter中的brightness参数或tf.image.random_brightness实现。
  4. 色调变化 :随机更改图像的色调,如使用torchvision.transforms.ColorJitter中的hue参数或tf.image.random_hue
  5. 颜色变化 :还可以同时随机更改图像的亮度、对比度、饱和度和色调,创建torchvision.transforms.ColorJitter实例并设置相应参数即可。
  6. 组合多种方法 :可以使用torchvision.transforms.Compose将多个图像增广方法组合起来应用到图像上。

在实践中,通常仅在训练样本上进行图像增广,而在预测过程中不使用随机操作的图像增广,以获得确切的结果。

相关推荐
szxinmai主板定制专家4 分钟前
柔宇柔性显示屏+x86、arm显示解决方案,还有库存
arm开发·人工智能·fpga开发
一个处女座的程序猿7 分钟前
AI之PaperTool:Aella Science Dataset Explorer(LAION )的简介、安装和使用方法、案例应用之详细攻略
人工智能·papertool·aella science
冴羽9 分钟前
一次找齐!1000 个 Nano Banana Pro 提示词
人工智能·aigc·gemini
reddingtons1 小时前
Illustrator 3D Mockup:零建模,矢量包装一键“上架”实拍
人工智能·ui·3d·aigc·illustrator·设计师·平面设计
孟祥_成都1 小时前
前端角度学 AI - 15 分钟入门 Python
前端·人工智能
Java中文社群1 小时前
太顶了!全网最全的600+图片生成玩法!
人工智能
阿里云大数据AI技术1 小时前
EMR AI 助手开启公测:用 AI 重塑大数据运维,更简单、更智能
人工智能
言之。1 小时前
AI时代的UI发展
人工智能·ui
拖拖7652 小时前
从“死”文档到“活”助手:Paper2Agent 如何将科研论文一键转化为可执行 AI
人工智能
攻城狮7号2 小时前
告别显存焦虑:阿里开源 Z-Image 如何用 6B 参数立足AI 绘画时代
人工智能·ai 绘画·qwen-image·z-image-turbo·阿里开源模型