Python求均值,方差,标准差

参考链接:变异系数(Coefficient of Variation,COV)和协方差(Covariance, Cov)-CSDN博客

参考链接:pandas中std和numpy的np.std区别_numpy pandas std-CSDN博客


在计算蛋白质谱数据中的每个蛋白对应的**变异系数(Coefficient of Variation, CV)**时发现,使用numpy 里的 .std() 和 pandas 里的 .std()计算得到的标准差值有差异,于是我就想一探究竟,不查不知道,一查吓一跳,又学到了!

原因在于默认情况下

numpy计算的为总体标准差,ddof=0;一般在拥有所有数据的情况下,计算所有数据的标准差时用,即最终除以n,而非n-1;

pandas计算的为样本标准偏差,ddof=1;一般在只有部分数据,但需要求总体标准差时用,当只有部分数据时,根据统计规律,除以n时计算的标准差往往偏小,因此需要除以n-1,即n-ddof;

numpy 的 .std() 和 pandas 的 .std() 函数之间是不同的

  • numpy 计算的是总体标准差,参数ddof = 0
  • pandas 计算的是样本标准差,参数ddof = 1
    CV又称"离散系数",是概率分布离散程度的一个归一化量度,其定义为标准差 与平均值 之比:

变异系数的优点:

(1)消除单位的影响

(2)消除均值大小不同的影响

我们首先来看一下在统计学中怎么对总体标准差和样本标准差公式进行定义的:

  • 如果是总体,标准差公式根号内除以N
  • 如果是样本,标准差公式根号内除以(N-1)

我们一般用Numpy来求均值、方差、标准差

python 复制代码
import numpy as np 
 
my_list = [1,2,3,4,5,6]

# 求均值
my_mean = np.mean(my_list)

# 求方差
my_var = np.var(my_list)

# 求标准差
my_std = np.std(my_list, ddof=1)
速度区别

速度由快到慢依次:

python 复制代码
my_arr = pd.Series([1,2,3,4,5,6])

# 速度由快至慢
np.std(my_arr.values) > my_arr.std(ddof=0) > np.std(my_arr)
相关推荐
小白程序员成长日记3 分钟前
2025.11.21 力扣每日一题
算法·leetcode·职场和发展
小年糕是糕手1 小时前
【C++】C++入门 -- inline、nullptr
linux·开发语言·jvm·数据结构·c++·算法·排序算法
高洁011 小时前
具身智能-普通LLM智能体与具身智能:从语言理解到自主行动
人工智能·深度学习·算法·aigc·知识图谱
星期天21 小时前
3.2联合体和枚举enum,还有动态内存malloc,free,calloc,realloc
c语言·开发语言·算法·联合体·动态内存·初学者入门·枚举enum
Andy2 小时前
回文子串数目--动态规划算法
算法·动态规划
sin_hielo2 小时前
leetcode 1930
算法·leetcode
塞北山巅2 小时前
相机自动曝光(AE)核心算法——从参数调节到亮度标定
数码相机·算法
聆风吟º2 小时前
【数据结构入门手札】算法核心概念与复杂度入门
数据结构·算法·复杂度·算法的特性·算法设计要求·事后统计方法·事前分析估算方法
vir023 小时前
密码脱落(最长回文子序列)
数据结构·c++·算法
福尔摩斯张3 小时前
二维数组详解:定义、初始化与实战
linux·开发语言·数据结构·c++·算法·排序算法