Python求均值,方差,标准差

参考链接:变异系数(Coefficient of Variation,COV)和协方差(Covariance, Cov)-CSDN博客

参考链接:pandas中std和numpy的np.std区别_numpy pandas std-CSDN博客


在计算蛋白质谱数据中的每个蛋白对应的**变异系数(Coefficient of Variation, CV)**时发现,使用numpy 里的 .std() 和 pandas 里的 .std()计算得到的标准差值有差异,于是我就想一探究竟,不查不知道,一查吓一跳,又学到了!

原因在于默认情况下

numpy计算的为总体标准差,ddof=0;一般在拥有所有数据的情况下,计算所有数据的标准差时用,即最终除以n,而非n-1;

pandas计算的为样本标准偏差,ddof=1;一般在只有部分数据,但需要求总体标准差时用,当只有部分数据时,根据统计规律,除以n时计算的标准差往往偏小,因此需要除以n-1,即n-ddof;

numpy 的 .std() 和 pandas 的 .std() 函数之间是不同的

  • numpy 计算的是总体标准差,参数ddof = 0
  • pandas 计算的是样本标准差,参数ddof = 1
    CV又称"离散系数",是概率分布离散程度的一个归一化量度,其定义为标准差 与平均值 之比:

变异系数的优点:

(1)消除单位的影响

(2)消除均值大小不同的影响

我们首先来看一下在统计学中怎么对总体标准差和样本标准差公式进行定义的:

  • 如果是总体,标准差公式根号内除以N
  • 如果是样本,标准差公式根号内除以(N-1)

我们一般用Numpy来求均值、方差、标准差

python 复制代码
import numpy as np 
 
my_list = [1,2,3,4,5,6]

# 求均值
my_mean = np.mean(my_list)

# 求方差
my_var = np.var(my_list)

# 求标准差
my_std = np.std(my_list, ddof=1)
速度区别

速度由快到慢依次:

python 复制代码
my_arr = pd.Series([1,2,3,4,5,6])

# 速度由快至慢
np.std(my_arr.values) > my_arr.std(ddof=0) > np.std(my_arr)
相关推荐
清酒难咽2 小时前
算法案例之递归
c++·经验分享·算法
让我上个超影吧3 小时前
【力扣26&80】删除有序数组中的重复项
算法·leetcode
张张努力变强4 小时前
C++ Date日期类的设计与实现全解析
java·开发语言·c++·算法
沉默-_-4 小时前
力扣hot100滑动窗口(C++)
数据结构·c++·学习·算法·滑动窗口
钱彬 (Qian Bin)4 小时前
项目实践19—全球证件智能识别系统(优化检索算法:从MobileNet转EfficientNet)
算法·全球证件识别
feifeigo1234 小时前
基于EM算法的混合Copula MATLAB实现
开发语言·算法·matlab
漫随流水4 小时前
leetcode回溯算法(78.子集)
数据结构·算法·leetcode·回溯算法
IT猿手5 小时前
六种智能优化算法(NOA、MA、PSO、GA、ZOA、SWO)求解23个基准测试函数(含参考文献及MATLAB代码)
开发语言·算法·matlab·无人机·无人机路径规划·最新多目标优化算法
We་ct5 小时前
LeetCode 151. 反转字符串中的单词:两种解法深度剖析
前端·算法·leetcode·typescript
芜湖xin5 小时前
【题解-Acwing】AcWing 5579. 增加模数(TLE)
算法·快速幂