Python求均值,方差,标准差

参考链接:变异系数(Coefficient of Variation,COV)和协方差(Covariance, Cov)-CSDN博客

参考链接:pandas中std和numpy的np.std区别_numpy pandas std-CSDN博客


在计算蛋白质谱数据中的每个蛋白对应的**变异系数(Coefficient of Variation, CV)**时发现,使用numpy 里的 .std() 和 pandas 里的 .std()计算得到的标准差值有差异,于是我就想一探究竟,不查不知道,一查吓一跳,又学到了!

原因在于默认情况下

numpy计算的为总体标准差,ddof=0;一般在拥有所有数据的情况下,计算所有数据的标准差时用,即最终除以n,而非n-1;

pandas计算的为样本标准偏差,ddof=1;一般在只有部分数据,但需要求总体标准差时用,当只有部分数据时,根据统计规律,除以n时计算的标准差往往偏小,因此需要除以n-1,即n-ddof;

numpy 的 .std() 和 pandas 的 .std() 函数之间是不同的

  • numpy 计算的是总体标准差,参数ddof = 0
  • pandas 计算的是样本标准差,参数ddof = 1
    CV又称"离散系数",是概率分布离散程度的一个归一化量度,其定义为标准差 与平均值 之比:

变异系数的优点:

(1)消除单位的影响

(2)消除均值大小不同的影响

我们首先来看一下在统计学中怎么对总体标准差和样本标准差公式进行定义的:

  • 如果是总体,标准差公式根号内除以N
  • 如果是样本,标准差公式根号内除以(N-1)

我们一般用Numpy来求均值、方差、标准差

python 复制代码
import numpy as np 
 
my_list = [1,2,3,4,5,6]

# 求均值
my_mean = np.mean(my_list)

# 求方差
my_var = np.var(my_list)

# 求标准差
my_std = np.std(my_list, ddof=1)
速度区别

速度由快到慢依次:

python 复制代码
my_arr = pd.Series([1,2,3,4,5,6])

# 速度由快至慢
np.std(my_arr.values) > my_arr.std(ddof=0) > np.std(my_arr)
相关推荐
NAGNIP4 分钟前
一文搞懂树模型与集成模型
算法·面试
NAGNIP9 分钟前
万字长文!一文搞懂监督学习中的分类模型!
算法·面试
技术狂人16813 分钟前
工业大模型工程化部署实战!4 卡 L40S 高可用集群(动态资源调度 + 监控告警 + 国产化适配)
人工智能·算法·面试·职场和发展·vllm
D_FW24 分钟前
数据结构第六章:图
数据结构·算法
a程序小傲1 小时前
京东Java面试被问:动态规划的状态压缩和优化技巧
java·开发语言·mysql·算法·adb·postgresql·深度优先
自学不成才1 小时前
深度复盘:一次flutter应用基于内存取证的黑盒加密破解实录并完善算法推理助手
c++·python·算法·数据挖掘
June`2 小时前
全排列与子集算法精解
算法·leetcode·深度优先
徐先生 @_@|||2 小时前
Palantir Foundry 五层架构模型详解
开发语言·python·深度学习·算法·机器学习·架构
夏鹏今天学习了吗3 小时前
【LeetCode热题100(78/100)】爬楼梯
算法·leetcode·职场和发展