Python求均值,方差,标准差

参考链接:变异系数(Coefficient of Variation,COV)和协方差(Covariance, Cov)-CSDN博客

参考链接:pandas中std和numpy的np.std区别_numpy pandas std-CSDN博客


在计算蛋白质谱数据中的每个蛋白对应的**变异系数(Coefficient of Variation, CV)**时发现,使用numpy 里的 .std() 和 pandas 里的 .std()计算得到的标准差值有差异,于是我就想一探究竟,不查不知道,一查吓一跳,又学到了!

原因在于默认情况下

numpy计算的为总体标准差,ddof=0;一般在拥有所有数据的情况下,计算所有数据的标准差时用,即最终除以n,而非n-1;

pandas计算的为样本标准偏差,ddof=1;一般在只有部分数据,但需要求总体标准差时用,当只有部分数据时,根据统计规律,除以n时计算的标准差往往偏小,因此需要除以n-1,即n-ddof;

numpy 的 .std() 和 pandas 的 .std() 函数之间是不同的

  • numpy 计算的是总体标准差,参数ddof = 0
  • pandas 计算的是样本标准差,参数ddof = 1
    CV又称"离散系数",是概率分布离散程度的一个归一化量度,其定义为标准差 与平均值 之比:

变异系数的优点:

(1)消除单位的影响

(2)消除均值大小不同的影响

我们首先来看一下在统计学中怎么对总体标准差和样本标准差公式进行定义的:

  • 如果是总体,标准差公式根号内除以N
  • 如果是样本,标准差公式根号内除以(N-1)

我们一般用Numpy来求均值、方差、标准差

python 复制代码
import numpy as np 
 
my_list = [1,2,3,4,5,6]

# 求均值
my_mean = np.mean(my_list)

# 求方差
my_var = np.var(my_list)

# 求标准差
my_std = np.std(my_list, ddof=1)
速度区别

速度由快到慢依次:

python 复制代码
my_arr = pd.Series([1,2,3,4,5,6])

# 速度由快至慢
np.std(my_arr.values) > my_arr.std(ddof=0) > np.std(my_arr)
相关推荐
货拉拉技术27 分钟前
大模型音频水印技术:用AI守护音频数据的“身份指纹”
人工智能·算法·安全
ysa0510301 小时前
利用数的变形简化大规模问题#数论
c++·笔记·算法
CoookeCola1 小时前
开源图像与视频过曝检测工具:HSV色彩空间分析与时序平滑处理技术详解
人工智能·深度学习·算法·目标检测·计算机视觉·开源·音视频
DARLING Zero two♡1 小时前
【优选算法】D&C-Mergesort-Harmonies:分治-归并的算法之谐
java·数据结构·c++·算法·leetcode
CoovallyAIHub1 小时前
万字详解:多目标跟踪(MOT)终极指南
深度学习·算法·计算机视觉
wudl55662 小时前
Apache Flink Keyed State 详解之一
算法·flink·apache
CoovallyAIHub2 小时前
Arm重磅加码边缘AI!Flexible Access开放v9平台,实现高端算力普惠
深度学习·算法·计算机视觉
louisdlee.2 小时前
树状数组维护DP——前缀最大值
数据结构·c++·算法·dp
Q741_1473 小时前
C++ 分治 归并排序 归并排序VS快速排序 力扣 912. 排序数组 题解 每日一题
c++·算法·leetcode·归并排序·分治
victory04313 小时前
K8S 安装 部署 文档
算法·贪心算法·kubernetes