FastAPI(六十五)实战开发《在线课程学习系统》基础架构的搭建

在之前三篇,我们分享的就是需求的分析,基本接口的整理,数据库链接的配置。这次我们分享项目的基本框架,目录结构大致如下:

common目录:

通用目录,放一些通用的处理

models目录:

数据库表模型放在这里(你也可以把数据库相关的都放在这个目录下)

routers目录:

放所有接口的地方

test目录:

放测试用例的地方

settings目录:

放配置文件的地方

middlewares目录:

放所有中间件的地方,比如mysql,redis,mongodb等(主要是数据库操作相关)

Dockerfile:

docker打包文件

main:

程序运行主文件

整体的架构设计完毕后,就可以进行相关开发了,这里我们把之前设计的数据库模型相关放到modles目录下的modles.py下:

复制代码
"""
-*- encoding=utf-8 -*-
Time: 2024/7/19 14:18
Author: lc
Email: 15101006331@163.com
File: models.py
"""
from sqlalchemy import Column, Integer, String, ForeignKey, Boolean, Text, DateTime
from sqlalchemy import MetaData
from sqlalchemy.inspection import inspect
from datetime import datetime

from sqlalchemy.orm import DeclarativeMeta

from middlewares.mysql.database import Base, engine


class Role(Base):
    """角色"""
    __tablename__ = "roles"

    id = Column(Integer, primary_key=True, index=True)
    name = Column(String(length=8), unique=True, index=True)  # 角色名称


class User(Base):
    """用户基础表"""
    __tablename__ = "users"

    id = Column(Integer, primary_key=True, index=True)
    username = Column(String(length=32), unique=True, index=True)  # 用户名
    password = Column(String(length=252))  # 密码
    status = Column(Integer, default=0)  # 删除,0正常
    job_num = Column(Integer, nullable=True)  # 工号
    student_num = Column(Integer, nullable=True)  # 学号
    age = Column(Integer)  # 年龄
    sex = Column(String(length=8), default="男")  # 性别
    role = Column(Integer, ForeignKey('roles.id'))  # 角色
    add_time = Column(DateTime, default=datetime.now())


class Course(Base):
    """课程"""
    __tablename__ = "courses"

    id = Column(Integer, primary_key=True, index=True)
    name = Column(String(length=252), unique=True, index=True)  # 课程名称
    icon = Column(String(length=252), nullable=True)  # icon
    desc = Column(String(length=252), nullable=True)  # 描述
    status = Column(Boolean, default=False)  # 状态
    onsale = Column(Boolean, default=False)  # 是否上架
    catalog = Column(Text, nullable=True)  # 目录
    owner = Column(Integer, ForeignKey('users.id'))  # 拥有者
    like_num = Column(Integer, default=0)  # 点赞


class StudentCourse(Base):
    """学生课程"""
    __tablename__ = "student_courses"

    id = Column(Integer, primary_key=True, index=True)
    student = Column(Integer, ForeignKey('users.id'))  # 学生
    course = Column(Integer, ForeignKey('courses.id'))  # 课程
    add_time = Column(DateTime, default=datetime.now())
    update_time = Column(DateTime, default=datetime.now())
    status = Column(Integer, default=0)  # 1.删除,0.正常


class CourseComment(Base):
    """课程评论"""
    __tablename__ = "course_comments"

    id = Column(Integer, primary_key=True, index=True)
    course = Column(Integer, ForeignKey('courses.id'))  # 课程
    user = Column(Integer, ForeignKey('users.id'))  # 评论人
    pid = Column(Integer)  # 回复
    add_time = Column(DateTime, default=datetime.now())
    top = Column(Boolean, default=False)  # 是否置顶
    context = Column(Text)
    status = Column(Boolean, default=0)  # 1删除0正常


class Message(Base):
    __tablename__ = "messages"

    id = Column(Integer, primary_key=True, index=True)
    send_user = Column(Integer, ForeignKey('users.id'))  # 发送者
    accept_user = Column(Integer, ForeignKey('users.id'))  # 接收者
    read = Column(Boolean, default=False)  # 是否已读,接收者是否已读
    send_time = Column(String(length=252))  # 发送时间
    pid = Column(Integer)  # 回复者
    add_time = Column(DateTime, default=datetime.now())  # 添加时间
    context = Column(Text)
    status = Column(Integer, default=0)  # 1删除0正常


def create_tables():
    global_dict = globals()
    classes = [v
               for k, v in global_dict.items()
               if callable(v) and isinstance(v, DeclarativeMeta) and hasattr(v, "__tablename__")]
    metadata = MetaData()
    for _cls in classes:
        if not inspect(engine).has_table(_cls.__tablename__, schema=None, metadata=metadata):
           _cls.__table__.create(bind=engine)
           print(f"表:'{_cls.__tablename__}' 创建完成!")
        else:
            print(f"表:'{_cls.__tablename__}' 已存在!")


if __name__ == '__main__':
    create_tables()

之前配置的链接mysql数据库的配置放在对应的database.py中

复制代码
"""
-*- encoding=utf-8 -*-
Time: 2024/7/19 14:22
Author: lc
Email: 15101006331@163.com
File: database.py
"""
from sqlalchemy import create_engine
from sqlalchemy.orm import declarative_base, sessionmaker
from settings.config import MYSQL_CONFIG

conn = "mysql+pymysql://{username}:{password}@{host}:{port}/{database}?charset=utf8".format(
    username=MYSQL_CONFIG["username"], password=MYSQL_CONFIG["password"], host=MYSQL_CONFIG["host"],
    port=MYSQL_CONFIG["port"], database=MYSQL_CONFIG["database"])
engine = create_engine(conn)

# 该类的每个实例都是一个数据库会话,该类本身还不是数据库会话,但是一旦我们创建了SessionLocal的实例,这个实例将是实际的数据库会话
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

# 创建数据库基类
Base = declarative_base()


def create_db():
    """每个请求处理完毕后关闭当前连接,不同的请求使用不同的链接"""
    db = SessionLocal()
    try:
        yield db
    finally:
        db.close()

接下来我们的开发只需要关注主逻辑的处理即可,准备放到对应的crud.py和schemas.py文件中,其中crud主要是逻辑处理详细代码,schemas中主要是参数模型以及响应结果模型。

common中我们对json和log做了统一的处理,对应可以参考:

FastAPI 学习之路(五十九)封装统一的json返回处理工具

FastAPI 学习之路(六十)打造系统的日志输出

相关推荐
onelafite6 天前
一键式商品信息获取:京东API返回值深度挖掘
api·fastapi
苏侠客8527 天前
在docker上部署fastapi的相关操作
docker·容器·fastapi
令狐寻欢8 天前
AI 大模型应用进阶系列(五):FastAPI 入门
人工智能·python·fastapi
六毛的毛12 天前
FastAPI入门:中间件、CORS跨域资源共享、SQL数据库
数据库·中间件·fastapi
蓝倾12 天前
批量获取亚马逊商品SKU商品规格调用流程
api·fastapi
蓝倾15 天前
京东商品销量数据如何获取?API接口调用操作详解
前端·api·fastapi
蓝倾19 天前
小红书获取笔记详情API接口调用操作指南
前端·api·fastapi
六毛的毛19 天前
FastAPI入门:表单数据、表单模型、请求文件、请求表单与文件
前端·python·fastapi
码@农20 天前
Python三大Web框架:FastAPI vs Flask vs Django 详解与快速入门指南
python·fastapi
MC皮蛋侠客20 天前
AsyncIOScheduler 使用指南:高效异步任务调度解决方案
网络·python·fastapi