【昇思25天学习打卡营第30天 | K近邻算法实现红酒聚类】

K近邻算法实现红酒聚类学习心得

摘要

本文档介绍了使用MindSpore框架实现K近邻(KNN)算法在红酒数据集上的聚类实验。通过实验,深入了解了KNN算法的基本原理、实现步骤以及在实际数据集上的应用效果。

文章大纲

  1. 实验目的:了解KNN算法的基本概念和使用MindSpore进行KNN实验的方法。
  2. KNN算法原理:介绍了K值、距离度量和分类决策规则等基本要素。
  3. 实验环境:介绍了实验所需的预备知识和环境配置。
  4. 数据处理:详细说明了数据准备、读取与处理的步骤。
  5. 模型构建:展示了如何利用MindSpore的算子计算距离并实现KNN模型。
  6. 模型预测:在验证集上验证KNN算法的有效性,并计算验证精度。
  7. 实验小结:总结了实验结果和KNN算法在红酒分类任务上的应用效果。

总结

通过本次实验,我对KNN算法有了更深入的理解。KNN算法作为一种基础的机器学习算法,其简单直观的原理和易于实现的特性使其在许多分类问题中表现出色。通过在红酒数据集上的实验,验证了KNN算法的有效性,能够根据酒的13种属性准确判断出酒的品种。实验过程中,MindSpore框架的易用性和高效性也给我留下了深刻印象。未来,我将继续探索更多机器学习算法,并尝试将它们应用于更复杂的数据集和实际问题中。

相关推荐
Aphelios3803 小时前
Java全栈面试宝典:线程机制与Spring IOC容器深度解析
java·开发语言·jvm·学习·rbac
日暮南城故里3 小时前
Java学习------源码解析之StringBuilder
java·开发语言·学习·源码
安全方案6 小时前
精心整理-2024最新网络安全-信息安全全套资料(学习路线、教程笔记、工具软件、面试文档).zip
笔记·学习·web安全
士别三日&&当刮目相看6 小时前
JAVA学习*Object类
java·开发语言·学习
序属秋秋秋7 小时前
算法基础_基础算法【高精度 + 前缀和 + 差分 + 双指针】
c语言·c++·学习·算法
爱吃馒头爱吃鱼7 小时前
QML编程中的性能优化二
开发语言·qt·学习·性能优化
白夜易寒7 小时前
Docker学习之容器虚拟化与虚拟机的区别(day11)
学习·docker·容器
教练 我想学编程8 小时前
学习记录706@微信小程序+springboot项目 真机测试 WebSocket错误: {errMsg: Invalid HTTP status.}连接不上
spring boot·学习·微信小程序
星空寻流年8 小时前
css之定位学习
前端·css·学习
张张张3129 小时前
4.1学习总结 拼图小游戏+集合进阶
java·学习