【昇思25天学习打卡营第30天 | K近邻算法实现红酒聚类】

K近邻算法实现红酒聚类学习心得

摘要

本文档介绍了使用MindSpore框架实现K近邻(KNN)算法在红酒数据集上的聚类实验。通过实验,深入了解了KNN算法的基本原理、实现步骤以及在实际数据集上的应用效果。

文章大纲

  1. 实验目的:了解KNN算法的基本概念和使用MindSpore进行KNN实验的方法。
  2. KNN算法原理:介绍了K值、距离度量和分类决策规则等基本要素。
  3. 实验环境:介绍了实验所需的预备知识和环境配置。
  4. 数据处理:详细说明了数据准备、读取与处理的步骤。
  5. 模型构建:展示了如何利用MindSpore的算子计算距离并实现KNN模型。
  6. 模型预测:在验证集上验证KNN算法的有效性,并计算验证精度。
  7. 实验小结:总结了实验结果和KNN算法在红酒分类任务上的应用效果。

总结

通过本次实验,我对KNN算法有了更深入的理解。KNN算法作为一种基础的机器学习算法,其简单直观的原理和易于实现的特性使其在许多分类问题中表现出色。通过在红酒数据集上的实验,验证了KNN算法的有效性,能够根据酒的13种属性准确判断出酒的品种。实验过程中,MindSpore框架的易用性和高效性也给我留下了深刻印象。未来,我将继续探索更多机器学习算法,并尝试将它们应用于更复杂的数据集和实际问题中。

相关推荐
Web阿成1 小时前
3.学习webpack配置 尝试打包ts文件
前端·学习·webpack·typescript
雷神乐乐2 小时前
Spring学习(一)——Sping-XML
java·学习·spring
李雨非-19期-河北工职大2 小时前
思考: 与人交际
学习
哦哦~9212 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习
小木_.3 小时前
【python 逆向分析某有道翻译】分析有道翻译公开的密文内容,webpack类型,全程扣代码,最后实现接口调用翻译,仅供学习参考
javascript·python·学习·webpack·分享·逆向分析
Web阿成3 小时前
5.学习webpack配置 babel基本配置
前端·学习·webpack
帅逼码农4 小时前
K-均值聚类算法
算法·均值算法·聚类
LeonNo115 小时前
golang , chan学习
开发语言·学习·golang
南宫生5 小时前
力扣-数据结构-1【算法学习day.72】
java·数据结构·学习·算法·leetcode