【昇思25天学习打卡营第30天 | K近邻算法实现红酒聚类】

K近邻算法实现红酒聚类学习心得

摘要

本文档介绍了使用MindSpore框架实现K近邻(KNN)算法在红酒数据集上的聚类实验。通过实验,深入了解了KNN算法的基本原理、实现步骤以及在实际数据集上的应用效果。

文章大纲

  1. 实验目的:了解KNN算法的基本概念和使用MindSpore进行KNN实验的方法。
  2. KNN算法原理:介绍了K值、距离度量和分类决策规则等基本要素。
  3. 实验环境:介绍了实验所需的预备知识和环境配置。
  4. 数据处理:详细说明了数据准备、读取与处理的步骤。
  5. 模型构建:展示了如何利用MindSpore的算子计算距离并实现KNN模型。
  6. 模型预测:在验证集上验证KNN算法的有效性,并计算验证精度。
  7. 实验小结:总结了实验结果和KNN算法在红酒分类任务上的应用效果。

总结

通过本次实验,我对KNN算法有了更深入的理解。KNN算法作为一种基础的机器学习算法,其简单直观的原理和易于实现的特性使其在许多分类问题中表现出色。通过在红酒数据集上的实验,验证了KNN算法的有效性,能够根据酒的13种属性准确判断出酒的品种。实验过程中,MindSpore框架的易用性和高效性也给我留下了深刻印象。未来,我将继续探索更多机器学习算法,并尝试将它们应用于更复杂的数据集和实际问题中。

相关推荐
星火开发设计34 分钟前
C++ 预处理指令:#include、#define 与条件编译
java·开发语言·c++·学习·算法·知识
BackCatK Chen1 小时前
第 1 篇:软件视角扫盲|TMC2240 软件核心特性 + 学习路径(附工具清单)
c语言·stm32·单片机·学习·电机驱动·保姆级教程·tmc2240
深蓝海拓1 小时前
PySide6从0开始学习的笔记(二十五) Qt窗口对象的生命周期和及时销毁
笔记·python·qt·学习·pyqt
理人综艺好会2 小时前
Web学习之用户认证
前端·学习
●VON2 小时前
React Native for OpenHarmony:项目目录结构与跨平台构建流程详解
javascript·学习·react native·react.js·架构·跨平台·von
葱明撅腚2 小时前
利用Python挖掘城市数据
python·算法·gis·聚类
AI视觉网奇2 小时前
FBX AnimSequence] 动画长度13与导入帧率30 fps(子帧0.94)不兼容。动画必须与帧边界对齐。
笔记·学习·ue5
woodykissme3 小时前
倒圆角问题解决思路分享
笔记·学习·工艺
黎雁·泠崖3 小时前
Java核心基础API学习总结:从Object到包装类的核心知识体系
java·开发语言·学习
香芋Yu3 小时前
【机器学习教程】第02章:线性代数基础【下】
学习·机器学习