【昇思25天学习打卡营第30天 | K近邻算法实现红酒聚类】

K近邻算法实现红酒聚类学习心得

摘要

本文档介绍了使用MindSpore框架实现K近邻(KNN)算法在红酒数据集上的聚类实验。通过实验,深入了解了KNN算法的基本原理、实现步骤以及在实际数据集上的应用效果。

文章大纲

  1. 实验目的:了解KNN算法的基本概念和使用MindSpore进行KNN实验的方法。
  2. KNN算法原理:介绍了K值、距离度量和分类决策规则等基本要素。
  3. 实验环境:介绍了实验所需的预备知识和环境配置。
  4. 数据处理:详细说明了数据准备、读取与处理的步骤。
  5. 模型构建:展示了如何利用MindSpore的算子计算距离并实现KNN模型。
  6. 模型预测:在验证集上验证KNN算法的有效性,并计算验证精度。
  7. 实验小结:总结了实验结果和KNN算法在红酒分类任务上的应用效果。

总结

通过本次实验,我对KNN算法有了更深入的理解。KNN算法作为一种基础的机器学习算法,其简单直观的原理和易于实现的特性使其在许多分类问题中表现出色。通过在红酒数据集上的实验,验证了KNN算法的有效性,能够根据酒的13种属性准确判断出酒的品种。实验过程中,MindSpore框架的易用性和高效性也给我留下了深刻印象。未来,我将继续探索更多机器学习算法,并尝试将它们应用于更复杂的数据集和实际问题中。

相关推荐
大白的编程日记.12 分钟前
【计算网络学习笔记】Socket编程UDP实现简单聊天室
网络·笔记·学习
叶子2024221 小时前
python学习--外星人入侵
学习
A24207349301 小时前
JavaScript学习
前端·javascript·学习
im_AMBER1 小时前
weather-app开发手记 02 JSON基础 | API 调用 400 错误修复 | JWT 认证问题
笔记·学习·json·axios·jwt
阿蒙Amon2 小时前
JavaScript学习笔记:1.JavaScript简介
javascript·笔记·学习
副露のmagic2 小时前
更弱智的算法学习day 10
python·学习·算法
Ada大侦探2 小时前
新手小白学习Power BI第五弹--------产品分析以及产品毛利率报表、条件式标红、饼图、散点图
学习·数据分析·powerbi
深海章鱼2 小时前
MD 基础学习2
学习·md
西岸行者2 小时前
学习Hammerstein-Wiener 模型,以及在回声消除场景中的应用
人工智能·学习·算法
鲨莎分不晴2 小时前
强化学习第四课 —— 深度强化学习:Policy Gradient 入门
人工智能·学习·机器学习