DB-GPT:LLM应用的集大成者

整体架构

架构解读

可以看到,DB-GPT把架构抽象为7层,自下而上分别为:

运行环境:支持本地/云端&单机/分布式等部署方式。顺便一提,RAY是蚂蚁深度参与的一个开源项目,所以对RAY功能的支持应该非常完善。

训练层:由子项目DB-GPT-Hub提供。以LLM为基,包含多种数据集和微调方法的微调框架。

协议层:AWEL(智能体编排语言),专为大模型应用开发设计的智能体工作流表达语言。

模块层:SMMF(多模型管理)、RAG(检索增强生成)、Agent(智能体)。

服务层:包含LLM、API、RAG在内的多个服务部署。

应用层:数据库对话、商业数据分析、知识库对话、表格对话等。

可视化层:输出样式,包含图表、工作流、文本的格式化输出等。

功能特性

一、以RAG为核心的知识库问答

支持多文件格式、支持向量检索和稀疏检索,对海量结构化,非结构化数据做统一向量存储与检索。

二、以Chatdata为核心的数据问答

支持自然语言与Excel、数据库、数仓等多种数据源交互,分析报告,生成可视化图表。

三、统一的多模型管理服务

包括开源、API代理等几十种国内外大语言模型。

四、自动化微调框架

围绕大语言模型、Text2SQL数据集、LoRA/QLoRA/Pturning等微调方法构建的自动化微调轻量框架, 让TextSQL微调像流水线一样方便。

五、多智能体与插件

支持自定义插件执行任务,工作流自编排,原生支持Auto-GPT插件模型。

隐私安全

通过私有化大模型、代理脱敏等多种技术保障数据的隐私安全。

写在后面

万物皆可RAG

不管是知识库问答、表格问答还是数据库对话,都可以把所有数据丢进去当成知识库,以此增强模型的能力。因此,RAG的一些技巧,比如混合检索和召回重排也就可以推广到其他应用上去了。

万物皆可Agent

可以说现有的大模型应用已经离不开Agent,Agent包含的几大核心模块基本已经固定下来,剩下的工作就是如何简化Agent的工作流、自定义工作流编排、Agent执行过程可控 等,如本项目中提到的AWEL和langchain-ai的LangGraph项目。

相关推荐
电商数据girl2 分钟前
产品经理对于电商接口的梳理||电商接口文档梳理与接入
大数据·数据库·python·自动化·产品经理
Spring小子1 小时前
黑马点评商户查询缓存--缓存更新策略
java·数据库·redis·后端
溜溜刘@♞2 小时前
数据库之mysql优化
数据库·mysql
uwvwko3 小时前
ctfhow——web入门214~218(时间盲注开始)
前端·数据库·mysql·ctf
柯3493 小时前
Redis的过期删除策略和内存淘汰策略
数据库·redis·lfu·lru
Tiger_shl3 小时前
【Python语言基础】24、并发编程
java·数据库·python
0509153 小时前
测试基础笔记第十一天
java·数据库·笔记
A charmer4 小时前
【MySQL】数据库基础
数据库·mysql
pjx9874 小时前
应用的“体检”与“换装”:精通Spring Boot配置管理与Actuator监控
数据库·spring boot·oracle
松树戈4 小时前
PostgreSQL 分区表——范围分区SQL实践
数据库·sql·postgresql