DB-GPT:LLM应用的集大成者

整体架构

架构解读

可以看到,DB-GPT把架构抽象为7层,自下而上分别为:

运行环境:支持本地/云端&单机/分布式等部署方式。顺便一提,RAY是蚂蚁深度参与的一个开源项目,所以对RAY功能的支持应该非常完善。

训练层:由子项目DB-GPT-Hub提供。以LLM为基,包含多种数据集和微调方法的微调框架。

协议层:AWEL(智能体编排语言),专为大模型应用开发设计的智能体工作流表达语言。

模块层:SMMF(多模型管理)、RAG(检索增强生成)、Agent(智能体)。

服务层:包含LLM、API、RAG在内的多个服务部署。

应用层:数据库对话、商业数据分析、知识库对话、表格对话等。

可视化层:输出样式,包含图表、工作流、文本的格式化输出等。

功能特性

一、以RAG为核心的知识库问答

支持多文件格式、支持向量检索和稀疏检索,对海量结构化,非结构化数据做统一向量存储与检索。

二、以Chatdata为核心的数据问答

支持自然语言与Excel、数据库、数仓等多种数据源交互,分析报告,生成可视化图表。

三、统一的多模型管理服务

包括开源、API代理等几十种国内外大语言模型。

四、自动化微调框架

围绕大语言模型、Text2SQL数据集、LoRA/QLoRA/Pturning等微调方法构建的自动化微调轻量框架, 让TextSQL微调像流水线一样方便。

五、多智能体与插件

支持自定义插件执行任务,工作流自编排,原生支持Auto-GPT插件模型。

隐私安全

通过私有化大模型、代理脱敏等多种技术保障数据的隐私安全。

写在后面

万物皆可RAG

不管是知识库问答、表格问答还是数据库对话,都可以把所有数据丢进去当成知识库,以此增强模型的能力。因此,RAG的一些技巧,比如混合检索和召回重排也就可以推广到其他应用上去了。

万物皆可Agent

可以说现有的大模型应用已经离不开Agent,Agent包含的几大核心模块基本已经固定下来,剩下的工作就是如何简化Agent的工作流、自定义工作流编排、Agent执行过程可控 等,如本项目中提到的AWEL和langchain-ai的LangGraph项目。

相关推荐
byzh_rc13 分钟前
[算法设计与分析-从入门到入土] 复杂算法
数据库·人工智能·算法·机器学习·支持向量机
白露与泡影16 分钟前
详细描述一条 SQL 语句在 MySQL 中的执行过程。
数据库·sql·mysql
qq_3168377521 分钟前
mysql mybatisPlus 存储经纬度
数据库·mysql
杀死那个蝈坦26 分钟前
短链接生成-基于布隆过滤器和唯一索引
java·数据库·微服务·oracle·rocketmq
38242782741 分钟前
使用 webdriver-manager配置geckodriver
java·开发语言·数据库·爬虫·python
惜分飞1 小时前
Oracle Recovery Tools 使用说明
数据库·oracle·oracle恢复·替代bbed·oracle恢复工具
如旧呀1 小时前
爬虫小知识
数据库·爬虫·mysql
培根芝士1 小时前
解决DBeaver对PostgresSQL备份数据库时报错
数据库
Hello World呀2 小时前
登录时,redis出现错误
数据库·redis·缓存
企鹅侠客2 小时前
第02章—先导基础篇:初识Redis
数据库·redis·缓存