非线性支持向量机(SVM)

理论知识推导

支持向量机(SVM)是一种用于分类和回归分析的监督学习模型。在处理非线性数据时,线性SVM可能无法很好地分离数据。为了解决这个问题,我们使用核函数将低维空间的非线性数据映射到高维空间,使得在高维空间中可以线性分离。

核函数

非线性SVM的目标函数

目标是找到最优分离超平面,使得分类间隔最大。其优化问题如下:

实施步骤与参数解读

  1. 导入库
  2. 生成多维数据集
  3. 数据标准化
  4. 分割数据集
  5. 训练未优化的非线性SVM模型
  6. 预测并评估未优化模型
  7. 优化模型(调整核函数和参数)
  8. 训练优化后的非线性SVM模型
  9. 预测并评估优化后的模型
  10. 可视化结果
python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score

# 设置全局字体为楷体
plt.rcParams['font.family'] = 'KaiTi'

# 生成多维数据集
X, y = datasets.make_classification(n_samples=500, n_features=5, n_informative=3, n_redundant=2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 未优化模型
clf_unoptimized = SVC(kernel='rbf')
clf_unoptimized.fit(X_train, y_train)
y_pred_unoptimized = clf_unoptimized.predict(X_test)

# 输出未优化模型的结果
print("未优化模型的分类报告:")
print(classification_report(y_test, y_pred_unoptimized))
print("未优化模型的准确率:", accuracy_score(y_test, y_pred_unoptimized))

# 优化后的模型
clf_optimized = SVC(kernel='rbf', C=10, gamma=0.1)
clf_optimized.fit(X_train, y_train)
y_pred_optimized = clf_optimized.predict(X_test)

# 输出优化后的模型的结果
print("优化后的模型的分类报告:")
print(classification_report(y_test, y_pred_optimized))
print("优化后的模型的准确率:", accuracy_score(y_test, y_pred_optimized))

# 可视化
plt.figure(figsize=(12, 6))

# 选取二维特征进行可视化
X_vis = X_test[:, :2]
y_vis = y_test

# 未优化模型的可视化
plt.subplot(1, 2, 1)
plt.scatter(X_vis[y_vis == 0][:, 0], X_vis[y_vis == 0][:, 1], color='blue', label='Class 0')
plt.scatter(X_vis[y_vis == 1][:, 0], X_vis[y_vis == 1][:, 1], color='red', label='Class 1')
plt.title('未优化模型')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()

# 优化后的模型的可视化
plt.subplot(1, 2, 2)
plt.scatter(X_vis[y_vis == 0][:, 0], X_vis[y_vis == 0][:, 1], color='blue', label='Class 0')
plt.scatter(X_vis[y_vis == 1][:, 0], X_vis[y_vis == 1][:, 1], color='red', label='Class 1')
plt.title('优化后的模型')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()

plt.show()
相关推荐
算AI4 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
你觉得2055 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
hyshhhh6 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
杉之7 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓7 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf7 小时前
图论----拓扑排序
算法·图论
我要昵称干什么7 小时前
基于S函数的simulink仿真
人工智能·算法
向上的车轮7 小时前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
AndrewHZ8 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl8 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法