单向链表

目录

思维导图:

学习内容:

[1. 链表的引入](#1. 链表的引入)

[1.1 顺序表的优缺点](#1.1 顺序表的优缺点)

[1.1.1 优点](#1.1.1 优点)

[1.1.2 不足](#1.1.2 不足)

[1.1.3 缺点](#1.1.3 缺点)

[1.2 链表的概念](#1.2 链表的概念)

[1.2.1 链式存储的线性表叫做链表](#1.2.1 链式存储的线性表叫做链表)

[1.2.2 链表的基础概念](#1.2.2 链表的基础概念)

[1.3 链表的分类](#1.3 链表的分类)

[2. 单向链表](#2. 单向链表)

[2.1 节点结构体类型](#2.1 节点结构体类型)

[2.2 创建链表](#2.2 创建链表)

[2.3 申请节点封装数据](#2.3 申请节点封装数据)

[2.4 链表判空](#2.4 链表判空)

[2.5 头插](#2.5 头插)

[2.6 链表遍历](#2.6 链表遍历)

[2.7 通过位置查找节点](#2.7 通过位置查找节点)

[2.8 任意位置插入元素](#2.8 任意位置插入元素)

[2.9 头删](#2.9 头删)

[2.10 任意位置删除函数](#2.10 任意位置删除函数)

[2.11 按值查找返回位置](#2.11 按值查找返回位置)

[2.12 按位置修改](#2.12 按位置修改)

[2.13 按值进行修改函数](#2.13 按值进行修改函数)

[2.14 链表的反转](#2.14 链表的反转)

[2.15 链表的释放](#2.15 链表的释放)

课外作业:


思维导图:


学习内容:

1. 链表的引入

1.1 顺序表的优缺点

1.1.1 优点

能够直接通过下标进行定位元素,访问效率高,对元素进行查找和修改比较快

1.1.2 不足

插入和删除元素需要移动大量的元素,效率较低

1.1.3 缺点

存储数据元素有上限,当达到MAX后,就不能再添加元素了

1.2 链表的概念

1.2.1 链式存储的线性表叫做链表

链式存储:表示数据元素的存储地址不一定连续

线性表:数据元素之间存在一对一的关系

1.2.2 链表的基础概念

1、节点:节点是链表的基本单位,由数据域和指针域组成

2、数据域:存放数据元素的部分

3、指针域:存放下一个节点地址的部分

4、前驱节点:当前节点的上一个节点

5、后继节点:当前节点的下一个节点

6、头节点:虚设的一个节点,数据域不存放数据元素,可以存放链表的长度

7、头指针:指向第一个节点的指针称为头指针

8、第一个节点:实际存储数据元素的链表上的第一个节点

注意:头节点的指针域其实就是头指针,也可以单独定义一个指针,指向第一个节点

1.3 链表的分类

1、单向链表:只能从头节点或第一个节点出发,单向访问其后继节点的链表称为单向链表

2、双向链表:从头部出发,既可以访问前驱节点,也可以访问后继节点

3、循环链表:首尾相接的链表称为循环链表

2. 单向链表

2.1 节点结构体类型

1> 头节点和普通节点数据域可以合到一起,使用一格共用体表示

2> 指针域都是指向普通节点的地址

//定义数据类型
typedef int datatype;

//定义结点类型
typedef struct Node
{
    union
    {
        int len;    //头结点数据域
        datatype data;  //普通结点数据域
    };

    struct Node *next;   //指针域
};

2.2 创建链表

1> 在堆区申请一格头节点的空间,就创建了一个链表

2> 需要对头节点的数据域初始化链表长度,指针域初始化NULL

//创建链表
NodePtr list_create()
{
    //只需要在堆区申请一个头结点
    NodePtr L = (NodePtr)malloc(sizeof(Node));
    if(NULL == L)
    {
        printf("创建失败\n");
        return NULL;
    }

    //程序执行至此,说明头结点创建结束
    L->len = 0;    //表示链表长度为0
    L->next = NULL;      ///防止野指针

    printf("链表创建成功\n");
    return L;
}

2.3 申请节点封装数据

1> 需要将要封装的数据当做函数的参数进行传递

2> 同样在堆区申请节点,就传入的数据放入数据域

//申请结点封装数据函数
NodePtr apply_node(datatype e)
{
    //在堆区申请一个结点的大小
    NodePtr p = (NodePtr)malloc(sizeof(Node));
    if(NULL == p)
    {
        printf("结点申请失败\n");
        return NULL;
    }

    //给结点内容赋值
    p->data = e;          //数据域赋值
    p->next = NULL;        //指针域

    return p;
}

2.4 链表判空

只需要判断头节点的指针域中是否为空即可

//链表判空
int list_empty(NodePtr L)
{
    return L->next == NULL;
}

2.5 头插

1> 表示将新插入的节点放入第一个节点中

2> 插入数据时,不能先将前面节点与后面节点先断开。一定要从新节点出发,指向后面的节点,然后将前驱节点指向字节

//头插
int list_insert_head(NodePtr L, datatype e)
{
    //判断逻辑
    if(NULL==L)
    {
        printf("链表不合法\n");
        return -1;
    }

    //申请结点封装数据
    NodePtr p = apply_node(e);
    if(NULL==p)
    {
        return -1;
    }

    //头插逻辑
    p->next = L->next;
    L->next = p;
    
    
    //表的变化
    L->len ++;
    printf("头插成功\n");
    return 0;
}

2.6 链表遍历

需要使用一个遍历指针,将每一个节点进行遍历一遍,如果该指针指向的节点不为空,就访问其数据域,向后偏移

//链表遍历函数
int list_show(NodePtr L)
{
    //判断逻辑
    if(NULL==L || list_empty(L))
    {
        printf("遍历失败\n");
        return -1;
    }
    
    printf("链表中的元素分别是:");
    //遍历逻辑
    NodePtr q = L->next;   //定义遍历指针从第一个结点出发
    while(q != NULL)
    {
        //输出数据域
        printf("%d\t", q->data);

        q = q->next;    //指针向后偏移一个
    }
}

2.7 通过位置查找节点

1> 参数:链表、位置

2> 返回值:对应节点的地址

//通过位置查找结点
NodePtr list_search_pos(NodePtr L, int pos)
{
    //判断逻辑
    if(NULL==L || list_empty(L) || pos<0 || pos>L->len)
    {
        printf("查找失败\n");
        return NULL;
    }

    //查找逻辑
    //定义遍历指针从头结点出发
    NodePtr q = L;
    for(int i=0; i<pos; i++)
    {
        q = q->next;
    }

    return q;     //将找到的结点地址返回
}

2.8 任意位置插入元素

1> 参数:链表、位置、要插入的元素

2> 返回值:int

3> 注意:必须找到要插入位置的节点的前驱节点,将前驱节点当作头节点,进行头插操作

//任意位置插入
int list_insert_pos(NodePtr L, int pos, datatype e)
{
    //判断逻辑
    if(NULL==L || pos<1 || pos>L->len+1)
    {
        printf("插入失败\n");
        return -1;
    }
    
    //申请结点封装数据
    NodePtr p = apply_node(e);
    if(NULL==p)
    {
        return -1;
    }
    
    //调用函数查找前驱结点
    NodePtr q = list_search_pos(L, pos-1);
    
    //插入逻辑
    p->next = q->next;
    q->next = p;
    
    //表的变化
    L->len++;
    printf("插入成功\n");
    return 0;
}

2.9 头删

1> 参数:链表

2> 返回值:int

3> 注意:需要将要删除的节点先标记一下,头节点的指针,指向第二个节点后,将标记的节点释放

//链表头删
int list_delete_head(NodePtr L)
{
    //判断逻辑
    if(NULL==L || list_empty(L))
    {
        printf("删除失败\n");
        return -1;
    }
    
    //删除三部曲
    NodePtr p = L->next;    //标记
    L->next = p->next;  //L->next->next  孤立
    free(p);            //释放
    p = NULL;

    //表长变化
    L->len--;

    printf("头删成功\n");
    return 0;
}

2.10 任意位置删除函数

1> 参数:链表、要删除的位置

2> 返回值:int

3> 注意:需要找到要删除的节点的前驱节点,将其当作头节点,进行头删逻辑

//链表任意位置删除
int list_delete_pos(NodePtr L, int pos)
{
    //判断逻辑
    if(NULL==L || list_empty(L) || pos<1 || pos>L->len)
    {
        printf("删除失败\n");
        return -1;
    }
    
    //找到前驱结点
    NodePtr q = list_search_pos(L, pos-1);
    
    //删除逻辑
    NodePtr p = q->next;           //标记
    q->next = q->next->next;   //p->next 孤立
    free(p);                   //释放
    p = NULL;

    
    //表的变化
    L->len--;
    printf("删除成功\n");
    return 0;
}

2.11 按值查找返回位置

1> 参数:链表、要查找的值

2> 返回值:元素在链表中的位置

//链表按值查找返回位置
int list_search_value(NodePtr L, datatype e)
{
    //判断逻辑
    if(NULL==L || list_empty(L))
    {
        printf("查找失败\n");
        return -1;
    }
    
    //查找逻辑
    //定义遍历指针从第一个结点出发
    NodePtr q = L->next;
    for(int index=1; index<=L->len; index++)
    {
        //判断当前结点的值是否为要找的数据
        if(q->data == e)
        {
            return index;
        }

        q = q->next;     //继续向后遍历
    }

    //程序执行至此,表示没找到
    printf("没找到\n");
    return -1;
}

2.12 按位置修改

1> 参数:链表、要修改的元素位置、要被更新的值

2> 返回值:int

3> 注意:先通过位置,找到对应的元素,更改该元素中的内容即可

//链表按位置进行修改
int list_update_pos(NodePtr L, int pos, datatype e)
{
    //判断逻辑
    if(NULL==L || list_empty(L) || pos<1 || pos>L->len)
    {
        printf("修改失败\n");
        return -1;
    }
    
    //按位置查找逻辑
    NodePtr p = list_search_pos(L, pos);
    
    //修改逻辑
    p->data = e;

    printf("修改成功\n");
    return 0;
}

2.13 按值进行修改函数

1> 参数:链表、旧值、新值

2> 返回值:int

3> 思路:先通过旧值找到位置,通过位置进行修改

//按值进行修改
int list_update_value(NodePtr L, datatype old_e, datatype new_e)
{
    //判断逻辑
    if(NULL==L || list_empty(L))
    {
        printf("修改失败\n");
        return -1;
    }
    
    //按值查找位置
    int res = list_search_value(L, old_e);
    if(res == -1)
    {
        printf("没有要修改的值\n");
        return -1;
    }
    
    //按位置修改
    list_update_pos(L, res, new_e);
    
    printf("修改成功\n");
    return 0;
}

2.14 链表的反转

1> 参数:链表

2> 返回值:int

3> 注意:在该操作中,没有节点被删除,也没有节点被释放

//将链表进行翻转
void list_reverse(NodePtr L)
{
    //判断逻辑
    if(NULL==L || L->len<=1)
    {
        printf("翻转失败\n");
        return ;
    }
    
    //翻转逻辑
    NodePtr H = L->next;   //将链表元素进行托付

    L->next = NULL;        //自己白手起家

    NodePtr p = NULL;         //结点的搬运工

    while(H != NULL)
    {
        p = H;      //搬运第一个结点
        H = H->next;     //头指针后移

        //将p以头插的方式放入L中
        p->next = L->next;
        L->next = p;
    }

    printf("翻转成功\n");
    
}

2.15 链表的释放

1> 参数:链表

2> 返回值:无

3> 注意:需要先将所有的节点内存全部释放后,再将头节点释放

//释放链表
void list_destroy(NodePtr L)
{
    //判断逻辑
    if(NULL == L)
    {
        return;
    }

    //将所有结点进行释放
    while(!list_empty(L))
    {
        //头删
        list_delete_head(L);
    }

    //释放头结点
    free(L);
    L = NULL;

    printf("释放成功\n");
}

课外作业:

1.链表的排序

解析:

//排序
void list_sort(NodePtr L)
{
	if(NULL == L || list_empty(L))
	{
		printf("排序失败\n");
		return ;
	}for (int i = 0; i < L->len; i++)
	{
	NodePtr q=L->next;
	NodePtr q1 = q->next;
	while(q1 != NULL){
		if(q->data > q1->data)
		{
			datatype temp = q->data;
			q->data = q1->data;
			q1->data  =temp;
		}
		q=q->next;            //指针向后偏移一个
		q1= q1->next;
		}
	}
	printf("排序成功\n");
	list_print(L);
}

2.链表的反转(递归实现)

解析:

  1. 链表去重

解析:

void list_rep(NodePtr L)
{
	if(NULL == L || L->len<=1)
	{
		printf("去重失败\n");
		return ;
	}
		NodePtr q = L;
		while(q->next != NULL){
			if(q->data == q->next->data)
			{
				NodePtr temp = q->next;
				q->next = temp->next;
				free(temp);
			}else{
				q=q->next;
			}
		}
		printf("去重成功\n");
		list_print(L);
}
相关推荐
Aileen_0v03 小时前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
是小胡嘛3 小时前
数据结构之旅:红黑树如何驱动 Set 和 Map
数据结构·算法
yuanManGan5 小时前
数据结构漫游记:静态链表的实现(CPP)
数据结构·链表
2401_858286119 小时前
115.【C语言】数据结构之排序(希尔排序)
c语言·开发语言·数据结构·算法·排序算法
猫猫的小茶馆9 小时前
【数据结构】数据结构整体大纲
linux·数据结构·算法·ubuntu·嵌入式软件
2401_8582861110 小时前
109.【C语言】数据结构之求二叉树的高度
c语言·开发语言·数据结构·算法
huapiaoy10 小时前
数据结构---Map&Set
数据结构
南宫生10 小时前
力扣-数据结构-1【算法学习day.72】
java·数据结构·学习·算法·leetcode
yuanbenshidiaos10 小时前
数据结构---------二叉树前序遍历中序遍历后序遍历
数据结构
^南波万^10 小时前
数据结构--排序
数据结构