【NLP】关于参数do_sample的解释

在自然语言处理(NLP)领域,特别是在使用神经网络模型进行文本生成时,do_sample是一个常见的参数,用于控制模型生成文本的方式。具体来说,do_sample参数决定模型是否采用随机采样(sampling)的方式来生成下一个词,还是仅仅选择最有可能的词。

  • 当 do_sample=False 时,模型将采用贪心搜索(Greedy Search)策略。这意味着在每一个时间步,模型都会选择具有最高概率的下一个词。这种方法简单快速,但可能会导致生成的文本过于保守,缺乏多样性,因为总是选择最可能的选项,可能会错过一些虽然概率较低但能产生更有趣或更合理文本的词。
  • 当 do_sample=True 时,模型会根据词的概率分布进行随机采样。在每个时间步,下一个词的选择是基于其预测概率的随机过程。这增加了生成文本的多样性和创造性,因为即使概率较低的词也有机会被选中。为了控制这种随机性,通常还会配合使用其他参数,如temperature、top_k和top_p等,来调整采样的范围和概率分布。

例如,在以下代码片段中:

复制代码
generate_kwargs={"temperature": 0.7, "do_sample": True}

do_sample被设置为True,意味着文本生成将采用随机采样方式,而temperature参数则会影响采样时概率分布的形状,从而影响生成文本的多样性。较高的temperature值会使分布更加均匀,增加随机性;较低的temperature值会使分布更加尖锐,减少随机性,更倾向于选择高概率的词。

(注:本答案来自通义千问)

相关推荐
橡晟3 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子3 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01053 小时前
什么是神经网络,常用的神经网络,如何训练一个神经网络
人工智能·深度学习·神经网络·ai
PyAIExplorer3 小时前
图像亮度调整的简单实现
人工智能·计算机视觉
Striker_Eureka4 小时前
DiffDet4SAR——首次将扩散模型用于SAR图像目标检测,来自2024 GRSL(ESI高被引1%论文)
人工智能·目标检测
Rvelamen5 小时前
LLM-SECURITY-PROMPTS大模型提示词攻击测评基准
人工智能·python·安全
AI technophile5 小时前
OpenCV计算机视觉实战(15)——霍夫变换详解
人工智能·opencv·计算机视觉
JNU freshman6 小时前
计算机视觉 之 数字图像处理基础(一)
人工智能·计算机视觉
鹧鸪云光伏6 小时前
鹧鸪云重构光伏发电量预测的精度标准
人工智能·无人机·光伏·光伏设计·光伏模拟
九章云极AladdinEdu6 小时前
摩尔线程MUSA架构深度调优指南:从CUDA到MUSA的显存访问模式重构原则
人工智能·pytorch·深度学习·机器学习·语言模型·tensorflow·gpu算力