【NLP】关于参数do_sample的解释

在自然语言处理(NLP)领域,特别是在使用神经网络模型进行文本生成时,do_sample是一个常见的参数,用于控制模型生成文本的方式。具体来说,do_sample参数决定模型是否采用随机采样(sampling)的方式来生成下一个词,还是仅仅选择最有可能的词。

  • 当 do_sample=False 时,模型将采用贪心搜索(Greedy Search)策略。这意味着在每一个时间步,模型都会选择具有最高概率的下一个词。这种方法简单快速,但可能会导致生成的文本过于保守,缺乏多样性,因为总是选择最可能的选项,可能会错过一些虽然概率较低但能产生更有趣或更合理文本的词。
  • 当 do_sample=True 时,模型会根据词的概率分布进行随机采样。在每个时间步,下一个词的选择是基于其预测概率的随机过程。这增加了生成文本的多样性和创造性,因为即使概率较低的词也有机会被选中。为了控制这种随机性,通常还会配合使用其他参数,如temperature、top_k和top_p等,来调整采样的范围和概率分布。

例如,在以下代码片段中:

复制代码
generate_kwargs={"temperature": 0.7, "do_sample": True}

do_sample被设置为True,意味着文本生成将采用随机采样方式,而temperature参数则会影响采样时概率分布的形状,从而影响生成文本的多样性。较高的temperature值会使分布更加均匀,增加随机性;较低的temperature值会使分布更加尖锐,减少随机性,更倾向于选择高概率的词。

(注:本答案来自通义千问)

相关推荐
千里飞刀客11 分钟前
aruco位姿检测
人工智能·opencv·计算机视觉
浪子不回头41518 分钟前
AI机考-Transformers
人工智能
BAOYUCompany27 分钟前
暴雨AI服务器点燃AGI蓝海市场
人工智能
神一样的老师43 分钟前
Google学术搜索实验室:自然语言检索新体验
人工智能
居然JuRan1 小时前
全量微调 vs LoRA:一篇文章彻底搞懂参数高效微调
人工智能
EQ-雪梨蛋花汤1 小时前
【AI工具】使用 Doubao-Seed-Code 优化 Unity 编辑器插件:从功能实现到界面美化的完整实践
人工智能·unity·编辑器
量子位1 小时前
马斯克开始用Grok替代员工了!最惨部门裁员90%
人工智能·grok
夫唯不争,故无尤也1 小时前
PyTorch 的维度变形一站式入门
人工智能·pytorch·python
量子位1 小时前
Nano Banana新玩法无限套娃!“GPT-5都不会处理这种级别的递归”
人工智能·gpt
m0_650108241 小时前
PaLM:Pathways 驱动的大规模语言模型 scaling 实践
论文阅读·人工智能·palm·谷歌大模型·大规模语言模型·全面评估与行为分析·scaling效应