【NLP】关于参数do_sample的解释

在自然语言处理(NLP)领域,特别是在使用神经网络模型进行文本生成时,do_sample是一个常见的参数,用于控制模型生成文本的方式。具体来说,do_sample参数决定模型是否采用随机采样(sampling)的方式来生成下一个词,还是仅仅选择最有可能的词。

  • 当 do_sample=False 时,模型将采用贪心搜索(Greedy Search)策略。这意味着在每一个时间步,模型都会选择具有最高概率的下一个词。这种方法简单快速,但可能会导致生成的文本过于保守,缺乏多样性,因为总是选择最可能的选项,可能会错过一些虽然概率较低但能产生更有趣或更合理文本的词。
  • 当 do_sample=True 时,模型会根据词的概率分布进行随机采样。在每个时间步,下一个词的选择是基于其预测概率的随机过程。这增加了生成文本的多样性和创造性,因为即使概率较低的词也有机会被选中。为了控制这种随机性,通常还会配合使用其他参数,如temperature、top_k和top_p等,来调整采样的范围和概率分布。

例如,在以下代码片段中:

复制代码
generate_kwargs={"temperature": 0.7, "do_sample": True}

do_sample被设置为True,意味着文本生成将采用随机采样方式,而temperature参数则会影响采样时概率分布的形状,从而影响生成文本的多样性。较高的temperature值会使分布更加均匀,增加随机性;较低的temperature值会使分布更加尖锐,减少随机性,更倾向于选择高概率的词。

(注:本答案来自通义千问)

相关推荐
Mintopia3 分钟前
“开源”和“闭源“,AI 模型的发展方向
前端·人工智能·aigc
广东数字化转型5 分钟前
开源!工业AI模型训练平台,包含图像采集、智能检测、数据标注、模型训练四大模块
人工智能·开源
龙亘川14 分钟前
技术驱动低空经济:5G-A+AI + 北斗赋能,无人机网联化核心架构与落地实践
人工智能·5g·无人机
kisshuan1239617 分钟前
实战景观图像识别与分类_faster-rcnn_hrnetv2p-w40_2x_coco模型应用
人工智能·分类·数据挖掘
wu_jing_sheng019 分钟前
黑龙江省保险补贴Shapefile转换工具:GIS数据处理自动化实践
大数据·数据库·人工智能
around_0120 分钟前
实验4基于神经网络的模式识别实验
人工智能·深度学习·神经网络
IT_陈寒21 分钟前
Vite 5.0 性能优化实战:从3秒到300ms的构建提速秘籍
前端·人工智能·后端
JeffDingAI22 分钟前
【CANN训练营】使用华为云开发者空间体验Sample仓实例体验
人工智能
学生高德26 分钟前
AnyGen Vs NotebookLM,AI助手领域正迎来一场标志性对决
人工智能
P-ShineBeam26 分钟前
知识图谱-检索生成再检索-RGR_KBQA
人工智能·语言模型·自然语言处理·知识图谱