【目标检测】Yolo5基本使用

前言

默认安装好所有配置,只是基于Yolo5项目文件开始介绍的。基于配置好的PyCharm进行讲解配置。写下的只是些基本内容,方便以后回忆用。避免配置好Yolo5的环境,拉取好Yolo5项目后,不知道该如何下手。如果有时间,我还是建议多阅读官方项目下的教程。yolov5官方

操作

配置好的环境的一定是能跑些下述的基本操作的,反正则是环境还有问题。还有在下载好Yolo5项目后,一定要在自己的项目终端下运行:pip install -r requirements.txt,下载其它依赖包,这也是Yolo5所要求的。

检测验证

点击打开detect.py,右击文件运行或者终端输入python detect.py --weights yolov5s.pt,验证官方的识别模型,如果一切正常会输出结果路径runs\detect\下。

好像首次运行yolov5s.pt是下载的。

模型训练

后加:这里其实,也可以直接也行python train.py,会自带下载官方的案例coco128的,不是必须要自己定义数据来验证。

首先准备好数据集以及标注文件。然后建立配置文件(.yaml),可以复制其它官方案例的来参考,在/data/文件夹下,配置五个基本参数就行了。path,路径。train,训练集路径(基于path下)。val,验证集路径(基于path下)。test,测试,可以不用配置。以及names,标记数对应着名称。

准备好,上述的后,就可以运行训练文件了。像我上面配置的是num.yaml文件,就运行它的配置,大家记得修改为自己的配置文件。好像默认是进行99轮配置(没修改配置下),就不放图演示了。

bash 复制代码
python train.py --data num.yaml --weights yolov5s.pt 

总结

除了上述介绍到的这两个基本的执行之外,目录下还有其它的文件,可以执行参考。可以看到上述命令在执行的时候,都带有weights、data之类的配置参数,其实参数还有很多的,感兴趣的可以执行翻看指定的文件下,如检验detect,头部有两个配置选参,以及文件中都有介绍。

相关推荐
子燕若水3 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室4 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿5 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫5 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手5 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记5 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元6 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术6 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
超龄超能程序猿6 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉