【目标检测】Yolo5基本使用

前言

默认安装好所有配置,只是基于Yolo5项目文件开始介绍的。基于配置好的PyCharm进行讲解配置。写下的只是些基本内容,方便以后回忆用。避免配置好Yolo5的环境,拉取好Yolo5项目后,不知道该如何下手。如果有时间,我还是建议多阅读官方项目下的教程。yolov5官方

操作

配置好的环境的一定是能跑些下述的基本操作的,反正则是环境还有问题。还有在下载好Yolo5项目后,一定要在自己的项目终端下运行:pip install -r requirements.txt,下载其它依赖包,这也是Yolo5所要求的。

检测验证

点击打开detect.py,右击文件运行或者终端输入python detect.py --weights yolov5s.pt,验证官方的识别模型,如果一切正常会输出结果路径runs\detect\下。

好像首次运行yolov5s.pt是下载的。

模型训练

后加:这里其实,也可以直接也行python train.py,会自带下载官方的案例coco128的,不是必须要自己定义数据来验证。

首先准备好数据集以及标注文件。然后建立配置文件(.yaml),可以复制其它官方案例的来参考,在/data/文件夹下,配置五个基本参数就行了。path,路径。train,训练集路径(基于path下)。val,验证集路径(基于path下)。test,测试,可以不用配置。以及names,标记数对应着名称。

准备好,上述的后,就可以运行训练文件了。像我上面配置的是num.yaml文件,就运行它的配置,大家记得修改为自己的配置文件。好像默认是进行99轮配置(没修改配置下),就不放图演示了。

bash 复制代码
python train.py --data num.yaml --weights yolov5s.pt 

总结

除了上述介绍到的这两个基本的执行之外,目录下还有其它的文件,可以执行参考。可以看到上述命令在执行的时候,都带有weights、data之类的配置参数,其实参数还有很多的,感兴趣的可以执行翻看指定的文件下,如检验detect,头部有两个配置选参,以及文件中都有介绍。

相关推荐
人工智能AI技术1 小时前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin1 小时前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能
Lsx_1 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent
aiguangyuan1 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp
Yeats_Liao2 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
深圳市恒星物联科技有限公司2 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星2 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃2 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao2 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
中金快讯2 小时前
新视野混合净值波动有几何?贝莱德基金回撤控制策略是否命中关键?
人工智能