【目标检测】Yolo5基本使用

前言

默认安装好所有配置,只是基于Yolo5项目文件开始介绍的。基于配置好的PyCharm进行讲解配置。写下的只是些基本内容,方便以后回忆用。避免配置好Yolo5的环境,拉取好Yolo5项目后,不知道该如何下手。如果有时间,我还是建议多阅读官方项目下的教程。yolov5官方

操作

配置好的环境的一定是能跑些下述的基本操作的,反正则是环境还有问题。还有在下载好Yolo5项目后,一定要在自己的项目终端下运行:pip install -r requirements.txt,下载其它依赖包,这也是Yolo5所要求的。

检测验证

点击打开detect.py,右击文件运行或者终端输入python detect.py --weights yolov5s.pt,验证官方的识别模型,如果一切正常会输出结果路径runs\detect\下。

好像首次运行yolov5s.pt是下载的。

模型训练

后加:这里其实,也可以直接也行python train.py,会自带下载官方的案例coco128的,不是必须要自己定义数据来验证。

首先准备好数据集以及标注文件。然后建立配置文件(.yaml),可以复制其它官方案例的来参考,在/data/文件夹下,配置五个基本参数就行了。path,路径。train,训练集路径(基于path下)。val,验证集路径(基于path下)。test,测试,可以不用配置。以及names,标记数对应着名称。

准备好,上述的后,就可以运行训练文件了。像我上面配置的是num.yaml文件,就运行它的配置,大家记得修改为自己的配置文件。好像默认是进行99轮配置(没修改配置下),就不放图演示了。

bash 复制代码
python train.py --data num.yaml --weights yolov5s.pt 

总结

除了上述介绍到的这两个基本的执行之外,目录下还有其它的文件,可以执行参考。可以看到上述命令在执行的时候,都带有weights、data之类的配置参数,其实参数还有很多的,感兴趣的可以执行翻看指定的文件下,如检验detect,头部有两个配置选参,以及文件中都有介绍。

相关推荐
薛定e的猫咪11 分钟前
【论文精读】ICLR 2023 --- 作为离线强化学习强表达能力策略类的扩散策略
人工智能·深度学习·机器学习·stable diffusion
连线Insight20 分钟前
当考公遇上AI,粉笔能吸引用户付费吗?
人工智能
●VON24 分钟前
开源 vs 商业:主流AI生态概览——从PyTorch到OpenAI的技术格局之争
人工智能·pytorch·开源
乾元1 小时前
AI 在网络工程中的 12 个高频场景深度实战(Cisco / Huawei 双体系)
人工智能
子午2 小时前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Dev7z2 小时前
基于深度学习和图像处理的药丸计数与分类系统研究
图像处理·人工智能·深度学习
Mxsoft6192 小时前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
shayudiandian3 小时前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花3 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午3 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习