【Langchain大语言模型开发教程】评估

🔗 LangChain for LLM Application Development - DeepLearning.AI

学习目标

1、Example generation

2、Manual evaluation and debug

3、LLM-assisted evaluation

4、LangChain evaluation platform

1、引包、加载环境变量;

python 复制代码
import os

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file

from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import DocArrayInMemorySearch

2、加载数据;

python 复制代码
file = 'OutdoorClothingCatalog_1000.csv'
loader = CSVLoader(file_path=file, encoding='utf-8')
data = loader.load()

3、创建向量数据库(内存警告⚠);

python 复制代码
model_name = "bge-large-en-v1.5"
embeddings = HuggingFaceEmbeddings(
    model_name=model_name,
)

db = DocArrayInMemorySearch.from_documents(data, embeddings)
retriever = db.as_retriever()

4、初始化一个LLM并创建一个RetrievalQ链;

python 复制代码
llm = ChatOpenAI(api_key=os.environ.get('ZHIPUAI_API_KEY'),
                         base_url=os.environ.get('ZHIPUAI_API_URL'),
                         model="glm-4",
                         temperature=0.98)

qa = RetrievalQA.from_chain_type(
    llm=llm, 
    chain_type="stuff", 
    retriever=retriever,
    verbose=True,
    chain_type_kwargs = {
        "document_separator": "<<<<>>>>>"
    }
)

Example generation

python 复制代码
from langchain.evaluation.qa import QAGenerateChain

example_gen_chain = QAGenerateChain.from_llm(llm)

new_examples = example_gen_chain.apply_and_parse(
    [{"doc": t} for t in data[:5]]
)

这里我们打印一下这个生成的example,发现是一个列表长下面这个样子;

python 复制代码
[{'qa_pairs': {'query': "What is the unique feature of the innersole in the Women's Campside Oxfords?", 'answer': 'The innersole has a vintage hunt, fish, and camping motif.'}}, {'qa_pairs': {'query': 'What is the name of the dog mat that is ruggedly constructed from recycled plastic materials, helping to keep dirt and water off the floors and plastic out of landfills?', 'answer': 'The name of the dog mat is Recycled Waterhog Dog Mat, Chevron Weave.'}}, {'qa_pairs': {'query': 'What is the name of the product described in the document that is suitable for Infant and Toddler Girls?', 'answer': "The product is called 'Infant and Toddler Girls' Coastal Chill Swimsuit, Two-Piece'."}}, {'qa_pairs': {'query': 'What is the primary material used in the construction of the Refresh Swimwear V-Neck Tankini, and what percentage of it is recycled?', 'answer': 'The primary material is nylon, with 82% of it being recycled nylon.'}}, {'qa_pairs': {'query': 'What is the material used for the EcoFlex 3L Storm Pants, according to the document?', 'answer': 'The EcoFlex 3L Storm Pants are made of 100% nylon, exclusive of trim.'}}]

所以这里我们需要进行一步提取;

python 复制代码
for example in new_examples:
    examples.append(example["qa_pairs"])

print(examples)

qa.invoke(examples[0]["query"])

Manual Evaluation

python 复制代码
import langchain
langchain.debug = True #开始debug模式,查看chain中的详细步骤

我们再次执行来查看chain中的细节;

LLM-assisted evaluation

那我们是不是可以使用语言模型来评估呢;

python 复制代码
langchain.debug = False #关闭debug模式

from langchain.evaluation.qa import QAEvalChain

让大语言模型来为我们每个example来生成答案;

python 复制代码
predictions = qa.apply(examples)

我们初始化一个评估链;

python 复制代码
eval_chain = QAEvalChain.from_llm(llm)

让大语言模型对实际答案和预测答案进行对比并给出一个评分;

python 复制代码
graded_outputs = eval_chain.evaluate(examples, predictions)

最后,我们可以打印一下看看结果;

python 复制代码
for i, eg in enumerate(examples):
    print(f"Example {i}:")
    print("Question: " + predictions[i]['query'])
    print("Real Answer: " + predictions[i]['answer'])
    print("Predicted Answer: " + predictions[i]['result'])
    print("Predicted Grade: " + graded_outputs[i]['results'])
    print()
相关推荐
丁先生qaq16 分钟前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖37 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
KKKlucifer1 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor1 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
浠寒AI3 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154464 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me074 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao4 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算4 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装4 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理