【Langchain大语言模型开发教程】评估

🔗 LangChain for LLM Application Development - DeepLearning.AI

学习目标

1、Example generation

2、Manual evaluation and debug

3、LLM-assisted evaluation

4、LangChain evaluation platform

1、引包、加载环境变量;

python 复制代码
import os

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file

from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import DocArrayInMemorySearch

2、加载数据;

python 复制代码
file = 'OutdoorClothingCatalog_1000.csv'
loader = CSVLoader(file_path=file, encoding='utf-8')
data = loader.load()

3、创建向量数据库(内存警告⚠);

python 复制代码
model_name = "bge-large-en-v1.5"
embeddings = HuggingFaceEmbeddings(
    model_name=model_name,
)

db = DocArrayInMemorySearch.from_documents(data, embeddings)
retriever = db.as_retriever()

4、初始化一个LLM并创建一个RetrievalQ链;

python 复制代码
llm = ChatOpenAI(api_key=os.environ.get('ZHIPUAI_API_KEY'),
                         base_url=os.environ.get('ZHIPUAI_API_URL'),
                         model="glm-4",
                         temperature=0.98)

qa = RetrievalQA.from_chain_type(
    llm=llm, 
    chain_type="stuff", 
    retriever=retriever,
    verbose=True,
    chain_type_kwargs = {
        "document_separator": "<<<<>>>>>"
    }
)

Example generation

python 复制代码
from langchain.evaluation.qa import QAGenerateChain

example_gen_chain = QAGenerateChain.from_llm(llm)

new_examples = example_gen_chain.apply_and_parse(
    [{"doc": t} for t in data[:5]]
)

这里我们打印一下这个生成的example,发现是一个列表长下面这个样子;

python 复制代码
[{'qa_pairs': {'query': "What is the unique feature of the innersole in the Women's Campside Oxfords?", 'answer': 'The innersole has a vintage hunt, fish, and camping motif.'}}, {'qa_pairs': {'query': 'What is the name of the dog mat that is ruggedly constructed from recycled plastic materials, helping to keep dirt and water off the floors and plastic out of landfills?', 'answer': 'The name of the dog mat is Recycled Waterhog Dog Mat, Chevron Weave.'}}, {'qa_pairs': {'query': 'What is the name of the product described in the document that is suitable for Infant and Toddler Girls?', 'answer': "The product is called 'Infant and Toddler Girls' Coastal Chill Swimsuit, Two-Piece'."}}, {'qa_pairs': {'query': 'What is the primary material used in the construction of the Refresh Swimwear V-Neck Tankini, and what percentage of it is recycled?', 'answer': 'The primary material is nylon, with 82% of it being recycled nylon.'}}, {'qa_pairs': {'query': 'What is the material used for the EcoFlex 3L Storm Pants, according to the document?', 'answer': 'The EcoFlex 3L Storm Pants are made of 100% nylon, exclusive of trim.'}}]

所以这里我们需要进行一步提取;

python 复制代码
for example in new_examples:
    examples.append(example["qa_pairs"])

print(examples)

qa.invoke(examples[0]["query"])

Manual Evaluation

python 复制代码
import langchain
langchain.debug = True #开始debug模式,查看chain中的详细步骤

我们再次执行来查看chain中的细节;

LLM-assisted evaluation

那我们是不是可以使用语言模型来评估呢;

python 复制代码
langchain.debug = False #关闭debug模式

from langchain.evaluation.qa import QAEvalChain

让大语言模型来为我们每个example来生成答案;

python 复制代码
predictions = qa.apply(examples)

我们初始化一个评估链;

python 复制代码
eval_chain = QAEvalChain.from_llm(llm)

让大语言模型对实际答案和预测答案进行对比并给出一个评分;

python 复制代码
graded_outputs = eval_chain.evaluate(examples, predictions)

最后,我们可以打印一下看看结果;

python 复制代码
for i, eg in enumerate(examples):
    print(f"Example {i}:")
    print("Question: " + predictions[i]['query'])
    print("Real Answer: " + predictions[i]['answer'])
    print("Predicted Answer: " + predictions[i]['result'])
    print("Predicted Grade: " + graded_outputs[i]['results'])
    print()
相关推荐
拓端研究室2 小时前
专题:2025AI产业全景洞察报告:企业应用、技术突破与市场机遇|附920+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·pdf
吴佳浩3 小时前
Langchain 浅出
python·langchain·llm
lumi.4 小时前
Vue + Element Plus 实现AI文档解析与问答功能(含详细注释+核心逻辑解析)
前端·javascript·vue.js·人工智能
m0_650108244 小时前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
金融小师妹5 小时前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
AKAMAI7 小时前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
银空飞羽7 小时前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
cg50177 小时前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert
Dev7z7 小时前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能
Curvatureflight8 小时前
GPT-4o Realtime 之后:全双工语音大模型如何改变下一代人机交互?
人工智能·语言模型·架构·人机交互