【Langchain大语言模型开发教程】评估

🔗 LangChain for LLM Application Development - DeepLearning.AI

学习目标

1、Example generation

2、Manual evaluation and debug

3、LLM-assisted evaluation

4、LangChain evaluation platform

1、引包、加载环境变量;

python 复制代码
import os

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file

from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import DocArrayInMemorySearch

2、加载数据;

python 复制代码
file = 'OutdoorClothingCatalog_1000.csv'
loader = CSVLoader(file_path=file, encoding='utf-8')
data = loader.load()

3、创建向量数据库(内存警告⚠);

python 复制代码
model_name = "bge-large-en-v1.5"
embeddings = HuggingFaceEmbeddings(
    model_name=model_name,
)

db = DocArrayInMemorySearch.from_documents(data, embeddings)
retriever = db.as_retriever()

4、初始化一个LLM并创建一个RetrievalQ链;

python 复制代码
llm = ChatOpenAI(api_key=os.environ.get('ZHIPUAI_API_KEY'),
                         base_url=os.environ.get('ZHIPUAI_API_URL'),
                         model="glm-4",
                         temperature=0.98)

qa = RetrievalQA.from_chain_type(
    llm=llm, 
    chain_type="stuff", 
    retriever=retriever,
    verbose=True,
    chain_type_kwargs = {
        "document_separator": "<<<<>>>>>"
    }
)

Example generation

python 复制代码
from langchain.evaluation.qa import QAGenerateChain

example_gen_chain = QAGenerateChain.from_llm(llm)

new_examples = example_gen_chain.apply_and_parse(
    [{"doc": t} for t in data[:5]]
)

这里我们打印一下这个生成的example,发现是一个列表长下面这个样子;

python 复制代码
[{'qa_pairs': {'query': "What is the unique feature of the innersole in the Women's Campside Oxfords?", 'answer': 'The innersole has a vintage hunt, fish, and camping motif.'}}, {'qa_pairs': {'query': 'What is the name of the dog mat that is ruggedly constructed from recycled plastic materials, helping to keep dirt and water off the floors and plastic out of landfills?', 'answer': 'The name of the dog mat is Recycled Waterhog Dog Mat, Chevron Weave.'}}, {'qa_pairs': {'query': 'What is the name of the product described in the document that is suitable for Infant and Toddler Girls?', 'answer': "The product is called 'Infant and Toddler Girls' Coastal Chill Swimsuit, Two-Piece'."}}, {'qa_pairs': {'query': 'What is the primary material used in the construction of the Refresh Swimwear V-Neck Tankini, and what percentage of it is recycled?', 'answer': 'The primary material is nylon, with 82% of it being recycled nylon.'}}, {'qa_pairs': {'query': 'What is the material used for the EcoFlex 3L Storm Pants, according to the document?', 'answer': 'The EcoFlex 3L Storm Pants are made of 100% nylon, exclusive of trim.'}}]

所以这里我们需要进行一步提取;

python 复制代码
for example in new_examples:
    examples.append(example["qa_pairs"])

print(examples)

qa.invoke(examples[0]["query"])

Manual Evaluation

python 复制代码
import langchain
langchain.debug = True #开始debug模式,查看chain中的详细步骤

我们再次执行来查看chain中的细节;

LLM-assisted evaluation

那我们是不是可以使用语言模型来评估呢;

python 复制代码
langchain.debug = False #关闭debug模式

from langchain.evaluation.qa import QAEvalChain

让大语言模型来为我们每个example来生成答案;

python 复制代码
predictions = qa.apply(examples)

我们初始化一个评估链;

python 复制代码
eval_chain = QAEvalChain.from_llm(llm)

让大语言模型对实际答案和预测答案进行对比并给出一个评分;

python 复制代码
graded_outputs = eval_chain.evaluate(examples, predictions)

最后,我们可以打印一下看看结果;

python 复制代码
for i, eg in enumerate(examples):
    print(f"Example {i}:")
    print("Question: " + predictions[i]['query'])
    print("Real Answer: " + predictions[i]['answer'])
    print("Predicted Answer: " + predictions[i]['result'])
    print("Predicted Grade: " + graded_outputs[i]['results'])
    print()
相关推荐
小雨青年2 分钟前
鸿蒙 HarmonyOS 6 | AI Kit 集成 Core Speech Kit 语音服务
人工智能·华为·harmonyos
懒羊羊吃辣条3 分钟前
电力负荷预测怎么做才不翻车
人工智能·深度学习·机器学习·时间序列
前进的程序员18 分钟前
2026年IT行业技术发展前瞻性见解
人工智能
汽车仪器仪表相关领域20 分钟前
MTX-A 模拟废气温度(EGT)计 核心特性与车载实操指南
网络·人工智能·功能测试·单元测试·汽车·可用性测试
GeeLark26 分钟前
#请输入你的标签内容
大数据·人工智能·自动化
番茄大王sc27 分钟前
2026年科研AI工具深度测评:文献调研与综述生成领域
论文阅读·人工智能·学习方法·论文笔记
让学习成为一种生活方式29 分钟前
酿酒葡萄VvOMTs基因家族鉴定及启动子功能分析--文献精读201
人工智能
运维小欣34 分钟前
博睿数据:以Agentic AI驱动智能运维未来
运维·人工智能
康康的AI博客1 小时前
AI大模型API中转站全方位解析
人工智能
深圳博众测控1 小时前
博众测控 | ISO 16750-2:2023汽车电气测试新标准解读:关键变化与测试设备选型
人工智能·测试工具·汽车