Llama中模块参数大小

LLama2中,流程中数据大小的变换如下

Transformer模块

第一次输入,进行prefill,输入x维度为[1, 8, 4096]

  1. 构建wq,wk,wv,wo,尺寸均为[4096,4096], 与x点乘,得到xq, xk, xv

  2. 构建KV cache, 尺寸为 [batch size, max_seq_len, local_kv_heads, head_dim],对应 [1, 8, 32, 128]

3.基于kv cache构造 keys, alues,对应的尺寸还是[1,8,32,128]

  1. 在最后两个维度对于xq和key进行点乘,得到scores,维度变成【1, 32, 8, 8】

  2. 将mask与scores相加

  3. 对于scores进行softmax

  4. 将scores [1, 32, 8, 8]与values [1, 32, 8, 128]进行乘法

  5. 得到output [1, 8, 4096]

  6. 将output再与wo进行乘法[1, 8, 4096]

  7. 接下来对于输出进行 ffn_norm的操作

Feedforward模块

11.然后进行feed_forward.得到当前transformer模块的输出 [1, 8, 4096]

feed_forward的操作如下,虽然代码很小,但是计算量却很大。

复制代码
    def forward(self, x):
        return self.w2(F.silu(self.w1(x)) * self.w3(x))

其中,w1的维度为[11008, 4096], w2的维度为[4096, 11008], w3的维度为[11008, 4096]

kv cache的表达如下

python 复制代码
        self.cache_k = torch.zeros(
            (
                args.max_batch_size,
                args.max_seq_len,
                self.n_local_kv_heads,
                self.head_dim,
            )
        ).cuda()
        self.cache_v = torch.zeros(
            (
                args.max_batch_size,
                args.max_seq_len,
                self.n_local_kv_heads,
                self.head_dim,
            )

关于kv cache的细节讨论

llama2设定 local_kv_heads为32,head_dim为128。所以,kv cache的尺寸为 [1, 512,32, 128] * 2

对于一个batch的数据来说哦,因为llama2 7B 包含32个transformer,所以,当使用FP32表达时, 对应一个batch的kv cache的大小为128 * 32 * 128 *2 * 32 * 4byte= 0.5GB.

这里,也可以看到几个变量:

* 当batch变大时,kv cache线性增长

* 当batch 的最大长度增大时, Kv cache线性增长。

参考链接:

https://arxiv.org/pdf/1911.02150

相关推荐
倔强青铜三1 小时前
苦练Python第72天:colorsys 模块 10 分钟入门,让你的代码瞬间“好色”!
人工智能·python·面试
MicroTech20251 小时前
MLGO微算法科技发布多用户协同推理批处理优化系统,重构AI推理服务效率与能耗新标准
人工智能·科技·算法
说私域1 小时前
互联网企业外化能力与实体零售融合:基于定制开发开源AI智能名片S2B2C商城小程序的实践探索
人工智能·开源·零售
沫儿笙1 小时前
FANUC发那科焊接机器人薄板焊接节气
人工智能·机器人
IT_陈寒1 小时前
震惊!我用JavaScript实现了Excel的这5个核心功能,同事直呼内行!
前端·人工智能·后端
淞宇智能科技1 小时前
固态电池五大核心设备全解析
大数据·人工智能·自动化
AndrewHZ2 小时前
【图像处理基石】多波段图像融合算法入门:从概念到实践
图像处理·人工智能·算法·图像融合·遥感图像·多波段·变换域
Web3_Daisy2 小时前
从透明到可控:链上换仓与资产路径管理的下一阶段
人工智能·安全·web3·区块链·比特币
Zyx20072 小时前
低代码革命:用 Coze AI 一键打造智能应用,人人都能当开发者!
人工智能
ricktian12262 小时前
Warp:智能终端初识
人工智能·agent·warp