Spark核心知识要点(八)Shuffle配置调优

1、Shuffle优化配置 -spark.shuffle.file.buffer

默认值 :32k
参数说明 :该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

2、Shuffle优化配置 -spark.reducer.maxSizeInFlight

默认值 :48m
参数说明 :该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

3、Shuffle优化配置 -spark.shuffle.io.maxRetries

默认值 :3
参数说明 :shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。

4、Shuffle优化配置 -spark.shuffle.io.retryWait

默认值 :5s
参数说明 : shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。

5、Shuffle优化配置 -spark.shuffle.memoryFraction

默认值 :0.2
参数说明 :该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
调优建议:在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。

6、Shuffle优化配置 -spark.shuffle.manager

默认值 :sort
参数说明 :该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。

7、Shuffle优化配置 -spark.shuffle.sort.bypassMergeThreshold

默认值 :200
参数说明 :当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。

8、Shuffle优化配置 -spark.shuffle.consolidateFiles

默认值 :false
参数说明 :如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。
调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。

总结:

1、spark.shuffle.file.buffer:主要是设置的Shuffle过程中写文件的缓冲,默认32k,如果内存足够,可以适当调大,来减少写入磁盘的数量。

2、spark.reducer.maxSizeInFight:主要是设置Shuffle过程中读文件的缓冲区,一次能够读取多少数据,如果内存足够,可以适当扩大,减少整个网络传输次数。

3、spark.shuffle.io.maxRetries:主要是设置网络连接失败时,重试次数,适当调大能够增加稳定性。

4、spark.shuffle.io.retryWait:主要设置每次重试之间的间隔时间,可以适当调大,增加程序稳定性。

5、spark.shuffle.memoryFraction:Shuffle过程中的内存占用,如果程序中较多使用了Shuffle操作,那么可以适当调大该区域。

6、spark.shuffle.manager:Hash和Sort方式,Sort是默认,Hash在reduce数量 比较少的时候,效率会很高。

7、spark.shuffle.sort. bypassMergeThreshold:设置的是Sort方式中,启用Hash输出方式的临界值,如果你的程序数据不需要排序,而且reduce数量比较少,那推荐可以适当增大临界值。

8、spark. shuffle.cosolidateFiles:如果你使用Hash shuffle方式,推荐打开该配置,实现更少的文件输出。

相关推荐
power-辰南3 小时前
高并发系统架构设计全链路指南
分布式·系统架构·高并发·springcloud
大数据追光猿9 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
roman_日积跬步-终至千里9 小时前
【分布式理论16】分布式调度2:资源划分和调度策略
分布式
人类群星闪耀时10 小时前
物联网与大数据:揭秘万物互联的新纪元
大数据·物联网·struts
快手技术10 小时前
Blaze RangePartitioning 算子Native实现全解析
spark·naive
DC_BLOG13 小时前
Linux-GlusterFS进阶分布式卷
linux·运维·服务器·分布式
点点滴滴的记录15 小时前
分布式之Raft算法
分布式
桃林春风一杯酒16 小时前
HADOOP_HOME and hadoop.home.dir are unset.
大数据·hadoop·分布式
桃木山人16 小时前
BigData File Viewer报错
大数据·java-ee·github·bigdata
B站计算机毕业设计超人17 小时前
计算机毕业设计Python+DeepSeek-R1高考推荐系统 高考分数线预测 大数据毕设(源码+LW文档+PPT+讲解)
大数据·python·机器学习·网络爬虫·课程设计·数据可视化·推荐算法