Spark核心知识要点(八)Shuffle配置调优

1、Shuffle优化配置 -spark.shuffle.file.buffer

默认值 :32k
参数说明 :该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

2、Shuffle优化配置 -spark.reducer.maxSizeInFlight

默认值 :48m
参数说明 :该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

3、Shuffle优化配置 -spark.shuffle.io.maxRetries

默认值 :3
参数说明 :shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。

4、Shuffle优化配置 -spark.shuffle.io.retryWait

默认值 :5s
参数说明 : shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。

5、Shuffle优化配置 -spark.shuffle.memoryFraction

默认值 :0.2
参数说明 :该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
调优建议:在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。

6、Shuffle优化配置 -spark.shuffle.manager

默认值 :sort
参数说明 :该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。

7、Shuffle优化配置 -spark.shuffle.sort.bypassMergeThreshold

默认值 :200
参数说明 :当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。

8、Shuffle优化配置 -spark.shuffle.consolidateFiles

默认值 :false
参数说明 :如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。
调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。

总结:

1、spark.shuffle.file.buffer:主要是设置的Shuffle过程中写文件的缓冲,默认32k,如果内存足够,可以适当调大,来减少写入磁盘的数量。

2、spark.reducer.maxSizeInFight:主要是设置Shuffle过程中读文件的缓冲区,一次能够读取多少数据,如果内存足够,可以适当扩大,减少整个网络传输次数。

3、spark.shuffle.io.maxRetries:主要是设置网络连接失败时,重试次数,适当调大能够增加稳定性。

4、spark.shuffle.io.retryWait:主要设置每次重试之间的间隔时间,可以适当调大,增加程序稳定性。

5、spark.shuffle.memoryFraction:Shuffle过程中的内存占用,如果程序中较多使用了Shuffle操作,那么可以适当调大该区域。

6、spark.shuffle.manager:Hash和Sort方式,Sort是默认,Hash在reduce数量 比较少的时候,效率会很高。

7、spark.shuffle.sort. bypassMergeThreshold:设置的是Sort方式中,启用Hash输出方式的临界值,如果你的程序数据不需要排序,而且reduce数量比较少,那推荐可以适当增大临界值。

8、spark. shuffle.cosolidateFiles:如果你使用Hash shuffle方式,推荐打开该配置,实现更少的文件输出。

相关推荐
We....20 小时前
Java分布式编程:RMI机制
java·开发语言·分布式
在未来等你21 小时前
Elasticsearch面试精讲 Day 18:内存管理与JVM调优
大数据·分布式·elasticsearch·搜索引擎·面试
We....21 小时前
Java 分布式缓存实现:结合 RMI 与本地文件缓存
java·分布式·缓存
Chasing__Dreams21 小时前
kafka--基础知识点--5.3--producer事务
分布式·kafka
小枫编程21 小时前
Spring Boot 调度任务在分布式环境下的坑:任务重复执行与一致性保证
spring boot·分布式·后端
智海观潮21 小时前
Spark SQL | 目前Spark社区最活跃的组件之一
大数据·spark
Lx35221 小时前
Hadoop数据一致性保障:处理分布式系统常见问题
大数据·hadoop
婲落ヽ紅顏誶21 小时前
测试es向量检索
大数据·elasticsearch·搜索引擎
IT学长编程1 天前
计算机毕业设计 基于Hadoop豆瓣电影数据可视化分析设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试
大数据·hadoop·python·django·毕业设计·毕业论文·豆瓣电影数据可视化分析
Hello.Reader1 天前
Kafka 实现从网络层到日志与位点的“全景拆解”
分布式·kafka