基于python的BP神经网络红酒品质分类预测模型

1 导入必要的库

python 复制代码
import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import LabelEncoder  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense  
from tensorflow.keras.callbacks import EarlyStopping  
from sklearn.metrics import classification_report, confusion_matrix
# 忽略Matplotlib的警告(可选)  
import warnings  
warnings.filterwarnings("ignore") 
# 设置中文显示和负号正常显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

2 数据加载与预处理

python 复制代码
# 读取数据  
df = pd.read_csv('train.csv')  
  
# 处理缺失值(这里假设我们删除含有缺失值的行)  
df.dropna(inplace=True)  
  
# 处理重复值(这里选择删除重复的行)  
df.drop_duplicates(inplace=True)  
  
# 将'wine types'列的文本转换为数值  
df['wine types'] = df['wine types'].map({'red': 1, 'white': 2})    
# 假设'quality'是我们要预测的标签  
X = df.drop('quality', axis=1)  
y = df['quality']

3 数据探索

python 复制代码
# 选择绘制特征数据的折线图
X_columns_to_plot = X.columns
  
df_plot = df[X_columns_to_plot]  
  
df_plot.plot(subplots=True, figsize=(15, 15))  
plt.tight_layout()  
plt.show()

图 3-1

4 BP神经网络模型构建

python 复制代码
import tensorflow as tf  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import StandardScaler  
  
# 分离特征和标签  
X = df.drop('quality', axis=1)  
y = df['quality']  
  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 特征缩放  
scaler = StandardScaler()  
X_train_scaled = scaler.fit_transform(X_train)  
X_test_scaled = scaler.transform(X_test)  
  
# 构建模型  
model = Sequential([  
    Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],)),  
    Dense(32, activation='relu'),  
    Dense(10, activation='softmax')  # 假设有10个类别,根据实际情况调整  
])  
  
# 编译模型  
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])  
  
# 训练模型  
history = model.fit(X_train_scaled, y_train, epochs=100, validation_split=0.2, verbose=1)

图 4-1

5 训练评估可视化

python 复制代码
# 绘制训练和验证的准确率与损失  
plt.figure(figsize=(12, 6))  
plt.subplot(1, 2, 1)  
plt.plot(history.history['accuracy'], color='#B0D5DF',label='Training Accuracy')  
plt.plot(history.history['val_accuracy'],  color='#1BA784',label='Validation Accuracy')  
plt.title('Training and Validation Accuracy')  
plt.legend()  
  
plt.subplot(1, 2, 2)  
plt.plot(history.history['loss'],  color='#D11A2D',label='Training Loss')  
plt.plot(history.history['val_loss'], color='#87723E', label='Validation Loss')  
plt.title('Training and Validation Loss')  
plt.legend()  
plt.show()

图 5-1 过拟合

成功过拟合了,其实早有预料,我手里的数据集都挺顽固的,训练效果都不好。

6 正则化

这里采用L2正则化

python 复制代码
import tensorflow as tf  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense 
from tensorflow.keras.regularizers import l2  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import StandardScaler  
  
# 分离特征和标签  
X = df.drop('quality', axis=1)  
y = df['quality']  
  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 特征缩放  
scaler = StandardScaler()  
X_train_scaled = scaler.fit_transform(X_train)  
X_test_scaled = scaler.transform(X_test)  
  
# 构建模型,添加L2正则化  
model = Sequential([    
    Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],), kernel_regularizer=l2(0.01)),  # 对第一个Dense层的权重添加L2正则化  
    Dense(64, activation='relu', kernel_regularizer=l2(0.01)),  # 对第二个Dense层的权重也添加L2正则化  
    Dense(10, activation='softmax')  # 输出层,假设是多分类问题  
])  
  
# 编译模型  
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])  
  
# 训练模型  
history = model.fit(X_train_scaled, y_train, epochs=100, validation_split=0.2, verbose=1)
python 复制代码
# 绘制训练和验证的准确率与损失  
plt.figure(figsize=(12, 6))  
plt.subplot(1, 2, 1)  
plt.plot(history.history['accuracy'], color='#B0D5DF',label='Training Accuracy')  
plt.plot(history.history['val_accuracy'],  color='#1BA784',label='Validation Accuracy')  
plt.title('Training and Validation Accuracy')  
plt.legend()  
  
plt.subplot(1, 2, 2)  
plt.plot(history.history['loss'],  color='#D11A2D',label='Training Loss')  
plt.plot(history.history['val_loss'], color='#87723E', label='Validation Loss')  
plt.title('Training and Validation Loss')  
plt.legend()  
plt.show()

图 6-1

这就不错了。

相关推荐
databook7 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar9 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户8356290780519 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_9 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机16 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机17 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机17 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机17 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i17 小时前
drf初步梳理
python·django
每日AI新事件17 小时前
python的异步函数
python