ADetailer模型+Stable Diffusion的inpainting功能是如何对遮罩区域进行修复生成的ADetailer

模型选则:

  1. face_yolov8n.pt 和 face_yolov8s.pt

    • 用途:用于人脸检测。
    • 特点:YOLOv8n 是轻量级版本,适合资源有限的设备;YOLOv8s 是标准版本,检测精度更高。
  2. hand_yolov8n.pt

    • 用途:用于手部检测。
    • 特点:轻量级模型,适合实时应用。
  3. person_yolov8n-seg.pt 和 person_yolov8s-seg.pt

    • 用途:用于人体检测和分割。
    • 特点:YOLOv8n-seg 是轻量级版本,适合快速检测;YOLOv8s-seg 提供更高的检测精度和分割效果。
  4. yolov8x-worldv2.pt

    • 用途:用于多种物体检测。
    • 特点:YOLOv8x 是扩展版本,具有更高的检测精度和更广泛的应用范围。
  5. MediaPipe 系列

    • mediapipe_face_full:用于全面的人脸检测和特征点标记。
    • mediapipe_face_short:用于快速人脸检测,适合实时应用。
    • mediapipe_face_mesh:用于高精度的人脸网格检测。
    • mediapipe_face_mesh_eyes_only:专注于眼部区域的高精度检测。

遮罩准备: ADetailer将目标区域转换为二值遮罩,白色表示需要修复的区域,黑色表示其他区域。

条件设置: Stable Diffusion使用文本提示和图像来指导生成,inpainting中还使用原始图像和遮罩作为条件。

潜在空间转换: 原始图像被编码到潜在空间,遮罩也被调整到相应尺寸。

噪声添加: 在潜在空间中,遮罩区域被替换为随机噪声,为后续去噪做准备。

去噪过程: Stable Diffusion模型通过去噪扩散,结合文本提示、未遮罩部分和遮罩区域逐步去除噪声。

注意力机制: 模型使用交叉注意力机制关联文本提示和图像特征,生成与提示相符的内容。

遮罩引导: 模型在每一步去噪中关注遮罩区域,未遮罩区域保持不变,遮罩区域根据上下文和提示生成。

迭代细化: 这个过程会多次迭代,每次进一步细化遮罩区域,迭代次数由用户设定。

潜在空间解码: 去噪完成后,生成的潜在表示被解码回像素空间。

后处理: 最终,生成的修复区域与原始图像无缝融合,并可能进行额外处理以平滑边缘过渡。

相关推荐
久笙&16 分钟前
高效设计AI Prompt:10大框架详细对比与应用
人工智能·prompt
yuanlulu17 分钟前
mindie推理大语言模型问题及解决方法汇总
人工智能·华为·自然语言处理·nlp·大语言模型·昇腾
学术会议20 分钟前
【智慧光学与高效信号处理】2025年信号处理与光学工程国际会议 (SPOE 2024)
大数据·人工智能·物联网·安全·信号处理
爱研究的小牛24 分钟前
Midjourney技术浅析(一)
人工智能·深度学习·aigc·midjourney
qq_2739002342 分钟前
PyTorch Lightning Callback介绍
人工智能·pytorch·python
mingo_敏43 分钟前
深度学习中的并行策略概述:4 Tensor Parallelism
人工智能·深度学习
平凡シンプル1 小时前
OpenCV 入门
opencv·计算机视觉
敲代码敲到头发茂密1 小时前
基于 LangChain 实现数据库问答机器人
数据库·人工智能·语言模型·langchain·机器人
神经美学_茂森2 小时前
【自由能系列(初级),论文解读】神经网络中,熵代表系统的不确定性,自由能则引导系统向更低能量的状态演化,而动力学则描述了系统状态随时间的变化。
人工智能·神经网络·php
cnbestec2 小时前
Kinova在开源家庭服务机器人TidyBot++研究里大展身手
人工智能·科技·机器人