ADetailer模型+Stable Diffusion的inpainting功能是如何对遮罩区域进行修复生成的ADetailer

模型选则:

  1. face_yolov8n.pt 和 face_yolov8s.pt

    • 用途:用于人脸检测。
    • 特点:YOLOv8n 是轻量级版本,适合资源有限的设备;YOLOv8s 是标准版本,检测精度更高。
  2. hand_yolov8n.pt

    • 用途:用于手部检测。
    • 特点:轻量级模型,适合实时应用。
  3. person_yolov8n-seg.pt 和 person_yolov8s-seg.pt

    • 用途:用于人体检测和分割。
    • 特点:YOLOv8n-seg 是轻量级版本,适合快速检测;YOLOv8s-seg 提供更高的检测精度和分割效果。
  4. yolov8x-worldv2.pt

    • 用途:用于多种物体检测。
    • 特点:YOLOv8x 是扩展版本,具有更高的检测精度和更广泛的应用范围。
  5. MediaPipe 系列

    • mediapipe_face_full:用于全面的人脸检测和特征点标记。
    • mediapipe_face_short:用于快速人脸检测,适合实时应用。
    • mediapipe_face_mesh:用于高精度的人脸网格检测。
    • mediapipe_face_mesh_eyes_only:专注于眼部区域的高精度检测。

遮罩准备: ADetailer将目标区域转换为二值遮罩,白色表示需要修复的区域,黑色表示其他区域。

条件设置: Stable Diffusion使用文本提示和图像来指导生成,inpainting中还使用原始图像和遮罩作为条件。

潜在空间转换: 原始图像被编码到潜在空间,遮罩也被调整到相应尺寸。

噪声添加: 在潜在空间中,遮罩区域被替换为随机噪声,为后续去噪做准备。

去噪过程: Stable Diffusion模型通过去噪扩散,结合文本提示、未遮罩部分和遮罩区域逐步去除噪声。

注意力机制: 模型使用交叉注意力机制关联文本提示和图像特征,生成与提示相符的内容。

遮罩引导: 模型在每一步去噪中关注遮罩区域,未遮罩区域保持不变,遮罩区域根据上下文和提示生成。

迭代细化: 这个过程会多次迭代,每次进一步细化遮罩区域,迭代次数由用户设定。

潜在空间解码: 去噪完成后,生成的潜在表示被解码回像素空间。

后处理: 最终,生成的修复区域与原始图像无缝融合,并可能进行额外处理以平滑边缘过渡。

相关推荐
臭东西的学习笔记3 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生4 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605224 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8884 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新4 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录4 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划5 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5205 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
余俊晖6 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别
森屿~~6 小时前
AI 手势识别系统:踩坑与实现全记录 (PyTorch + MediaPipe)
人工智能·pytorch·python