ADetailer模型+Stable Diffusion的inpainting功能是如何对遮罩区域进行修复生成的ADetailer

模型选则:

  1. face_yolov8n.pt 和 face_yolov8s.pt

    • 用途:用于人脸检测。
    • 特点:YOLOv8n 是轻量级版本,适合资源有限的设备;YOLOv8s 是标准版本,检测精度更高。
  2. hand_yolov8n.pt

    • 用途:用于手部检测。
    • 特点:轻量级模型,适合实时应用。
  3. person_yolov8n-seg.pt 和 person_yolov8s-seg.pt

    • 用途:用于人体检测和分割。
    • 特点:YOLOv8n-seg 是轻量级版本,适合快速检测;YOLOv8s-seg 提供更高的检测精度和分割效果。
  4. yolov8x-worldv2.pt

    • 用途:用于多种物体检测。
    • 特点:YOLOv8x 是扩展版本,具有更高的检测精度和更广泛的应用范围。
  5. MediaPipe 系列

    • mediapipe_face_full:用于全面的人脸检测和特征点标记。
    • mediapipe_face_short:用于快速人脸检测,适合实时应用。
    • mediapipe_face_mesh:用于高精度的人脸网格检测。
    • mediapipe_face_mesh_eyes_only:专注于眼部区域的高精度检测。

遮罩准备: ADetailer将目标区域转换为二值遮罩,白色表示需要修复的区域,黑色表示其他区域。

条件设置: Stable Diffusion使用文本提示和图像来指导生成,inpainting中还使用原始图像和遮罩作为条件。

潜在空间转换: 原始图像被编码到潜在空间,遮罩也被调整到相应尺寸。

噪声添加: 在潜在空间中,遮罩区域被替换为随机噪声,为后续去噪做准备。

去噪过程: Stable Diffusion模型通过去噪扩散,结合文本提示、未遮罩部分和遮罩区域逐步去除噪声。

注意力机制: 模型使用交叉注意力机制关联文本提示和图像特征,生成与提示相符的内容。

遮罩引导: 模型在每一步去噪中关注遮罩区域,未遮罩区域保持不变,遮罩区域根据上下文和提示生成。

迭代细化: 这个过程会多次迭代,每次进一步细化遮罩区域,迭代次数由用户设定。

潜在空间解码: 去噪完成后,生成的潜在表示被解码回像素空间。

后处理: 最终,生成的修复区域与原始图像无缝融合,并可能进行额外处理以平滑边缘过渡。

相关推荐
神经星星10 分钟前
【TVM 教程】在 TVM 中使用 Bring Your Own Datatypes
人工智能·深度学习·机器学习
说私域38 分钟前
虚拟与现实交融视角下定制开发开源AI智能名片S2B2C商城小程序赋能新零售商业形态研究
人工智能·小程序·开源·零售
她说人狗殊途42 分钟前
神经网络基础讲解 一
人工智能·深度学习·神经网络
阿里云大数据AI技术43 分钟前
【新模型速递】PAI-Model Gallery云上一键部署MiniMax-M1模型
人工智能·llm·云计算
胖墩会武术44 分钟前
【PyTorch项目实战】CycleGAN:无需成对训练样本,支持跨领域图像风格迁移
人工智能·pytorch·python
老周聊大模型1 小时前
ReAct Agent终极指南|LangChain实战×多工具调度×幻觉消除(
人工智能·程序员
学术 学术 Fun1 小时前
Vui:轻量级语音对话模型整合包,让交互更自然
人工智能·深度学习·ai
聚客AI2 小时前
工业级Prompt设计手册:构建高准确率AI应用的10个黄金法则
人工智能·llm·掘金·日新计划
302AI2 小时前
2025 上半年 AI 生图王者之争:302.AI 集结全明星阵容,TOP5 模型实测揭晓!AIGC 爱好者必读
人工智能·aigc
Se7en2582 小时前
Speculative Decoding 推测解码方案详解
人工智能